Suppr超能文献

二维密度矩阵拓扑费米子相:拓扑乌尔曼数

Two-dimensional density-matrix topological fermionic phases: topological Uhlmann numbers.

作者信息

Viyuela O, Rivas A, Martin-Delgado M A

机构信息

Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain.

出版信息

Phys Rev Lett. 2014 Aug 15;113(7):076408. doi: 10.1103/PhysRevLett.113.076408. Epub 2014 Aug 13.

Abstract

We construct a topological invariant that classifies density matrices of symmetry-protected topological orders in two-dimensional fermionic systems. As it is constructed out of the previously introduced Uhlmann phase, we refer to it as the topological Uhlmann number n_{U}. With it, we study thermal topological phases in several two-dimensional models of topological insulators and superconductors, computing phase diagrams where the temperature T is on an equal footing with the coupling constants in the Hamiltonian. Moreover, we find novel thermal-topological transitions between two nontrivial phases in a model with high Chern numbers. At small temperatures we recover the standard topological phases as the Uhlmann number approaches to the Chern number.

摘要

我们构造了一个拓扑不变量,用于对二维费米子系统中对称保护拓扑序的密度矩阵进行分类。由于它是由先前引入的乌尔曼相位构建而成,我们将其称为拓扑乌尔曼数(n_U)。利用它,我们研究了拓扑绝缘体和超导体的几个二维模型中的热拓扑相,计算了温度(T)与哈密顿量中的耦合常数处于同等地位的相图。此外,我们在具有高陈数的模型中发现了两个非平凡相之间的新型热拓扑转变。在低温下,当乌尔曼数接近陈数时,我们恢复了标准拓扑相。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验