Suppr超能文献

具有扩展耦合的厄米和非厄米拓扑模型的混合态行为。

Mixed state behavior of Hermitian and non-Hermitian topological models with extended couplings.

机构信息

Theoretical Sciences Division, Poornaprajna Institute of Scientific Research, Bidalur, Bangalore, 562164, India.

Graduate Studies, Manipal Academy of Higher Education, Madhava Nagar, Manipal, 576104, India.

出版信息

Sci Rep. 2023 Apr 20;13(1):6431. doi: 10.1038/s41598-023-33449-9.

Abstract

Geometric phase is an important tool to define the topology of the Hermitian and non-Hermitian systems. Besides, the range of coupling plays an important role in realizing higher topological indices and transition among them. With a motivation to understand the geometric phases for mixed states, we discuss finite temperature analysis of Hermitian and non-Hermitian topological models with extended range of couplings. To understand the geometric phases for the mixed states, we use Uhlmann phase and discuss the merit-limitation with respect extended range couplings. We extend the finite temperature analysis to non-Hermitian models and define topological invariant for different ranges of coupling. We include the non-Hermitian skin effect, and provide the derivation of topological invariant in the generalized Brillouin zone and their mixed state behavior also. We also adopt mixed geometric phases through interferometric approach, and discuss the geometric phases of extended-range (Hermitian and non-Hermitian) models at finite temperature.

摘要

几何相位是定义厄米和非厄米系统拓扑的重要工具。此外,耦合范围在实现更高的拓扑指标和它们之间的转变中起着重要作用。为了理解混合态的几何相位,我们讨论了具有扩展耦合范围的厄米和非厄米拓扑模型的有限温度分析。为了理解混合态的几何相位,我们使用了 Uhlmann 相位,并讨论了与扩展耦合范围相关的优点限制。我们将有限温度分析扩展到非厄米模型,并为不同的耦合范围定义拓扑不变量。我们包括了非厄米的表面效应,并提供了广义布里渊区中的拓扑不变量的推导及其混合态行为。我们还通过干涉方法采用了混合几何相位,并讨论了有限温度下扩展范围(厄米和非厄米)模型的几何相位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad46/10119284/c7071112259e/41598_2023_33449_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验