Suppr超能文献

用于跨组比较中测量不变性研究的贝叶斯多层MIMIC模型

Bayesian Multilevel MIMIC Modeling for Studying Measurement Invariance in Cross-group Comparisons.

作者信息

Bruyneel Luk, Li Baoyue, Squires Allison, Spotbeen Sara, Meuleman Bart, Lesaffre Emmanuel, Sermeus Walter

机构信息

*Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Kapucijnenvoer, Leuven, Belgium †Department of Biostatistics, Erasmus University Rotterdam, Rotterdam, the Netherlands ‡College of Nursing, New York University, New York, NY §Department of Sociology, Katholieke Universiteit Leuven, Leuven, Belgium.

出版信息

Med Care. 2017 Apr;55(4):e25-e35. doi: 10.1097/MLR.0000000000000164.

Abstract

BACKGROUND

Recent methodological advancements should catalyze the evaluation of measurement invariance across groups, which is required for conducting meaningful cross-group comparisons.

OBJECTIVE

The aim of this study was to apply a state-of-the-art statistical method for comparing latent mean scores and evaluating measurement invariance across managers' and frontline workers' ratings of the organization of hospital care.

METHODS

On the 87 nursing units in a single institution, French-speaking and Dutch-speaking nursing unit managers' and staff nurses' ratings of their work environment were measured using the multidimensional 32-item practice environment scale of the nursing work index (PES-NWI). Measurement invariance and latent mean scores were evaluated in the form of a Bayesian 2-level multiple indicators multiple causes model with covariates at the individual nurse and nursing unit level. Role (manager, staff nurse) and language (French, Dutch) are of primary interest.

RESULTS

Language group membership accounted for 7 of 11 PES-NWI items showing measurement noninvariance. Cross-group comparisons also showed that covariates at both within-level and between-level had significant effects on PES-NWI latent mean scores. Most notably, nursing unit managers, when compared with staff nurses, hold more positive views of several PES-NWI dimensions.

CONCLUSIONS

Using a widely used instrument for measuring nurses' work environment, this study shows that precautions for the potential threat of measurement noninvariance are necessary in all stages of a study that relies on survey data to compare groups, particularly in multilingual settings. A Bayesian multilevel multiple indicators multiple causes approach can accommodate for detecting all possible instances of noninvariance for multiple covariates of interest at the within-level and between-level jointly.

摘要

背景

最近的方法学进展应能促进对不同群体间测量不变性的评估,这是进行有意义的跨群体比较所必需的。

目的

本研究的目的是应用一种先进的统计方法来比较潜在均值分数,并评估医院护理组织中管理者和一线员工评分的测量不变性。

方法

在一个机构的87个护理单元中,使用护理工作指数(PES-NWI)的多维32项实践环境量表,测量了说法语和荷兰语的护理单元管理者和护士对其工作环境的评分。以贝叶斯二级多指标多原因模型的形式评估测量不变性和潜在均值分数,该模型在个体护士和护理单元层面纳入协变量。主要关注的因素是角色(管理者、护士)和语言(法语、荷兰语)。

结果

语言群体成员身份在11项显示测量非不变性的PES-NWI项目中占7项。跨群体比较还表明,组内和组间的协变量对PES-NWI潜在均值分数有显著影响。最值得注意的是,与护士相比,护理单元管理者对PES-NWI的几个维度持有更积极的看法。

结论

本研究使用一种广泛用于测量护士工作环境的工具,表明在依赖调查数据进行群体比较的研究的所有阶段,特别是在多语言环境中,必须防范测量非不变性的潜在威胁。贝叶斯多层次多指标多原因方法可以共同检测组内和组间多个感兴趣协变量的所有可能的非不变性情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验