Advanced Materials Laboratory and ‡Center for Integrated Nanotechnologies, Sandia National Laboratories , Albuquerque, New Mexico 87185, United States.
J Am Chem Soc. 2014 Sep 24;136(38):13138-41. doi: 10.1021/ja506718z. Epub 2014 Sep 10.
The asymmetry that pervades molecular mechanisms of living systems increasingly informs the aims of synthetic chemistry, particularly in the development of catalysts, particles, nanomaterials, and their assemblies. For particle synthesis, overcoming viscous forces to produce complex, nonspherical shapes is particularly challenging; a problem that is continuously solved in nature when observing dynamic biological entities such as cells. Here we bridge these dynamics to synthetic chemistry and show that the intrinsic asymmetric shapes of erythrocytes can be directed, captured, and translated into composites and inorganic particles using a process of nanoscale silica-bioreplication. We show that crucial aspects in particle design such as particle-particle interactions, pore size, and macromolecular accessibility can be tuned using cellular responses. The durability of resultant particles provides opportunities for shape-preserving transformations into metallic, semiconductive, and ferromagnetic particles and assemblies. The ability to use cellular responses as "structure directing agents" offers an unprecedented toolset to design colloidal-scale materials.
在生命系统的分子机制中普遍存在的不对称性越来越多地为合成化学的目标提供了信息,特别是在催化剂、颗粒、纳米材料及其组装体的开发方面。对于颗粒合成来说,克服粘性力以产生复杂的非球形形状是特别具有挑战性的;当观察到细胞等动态生物实体时,这个问题在自然界中不断得到解决。在这里,我们将这些动力学与合成化学联系起来,并展示了使用纳米级二氧化硅生物复制的过程,可以将红细胞的固有不对称形状定向、捕获并转化为复合材料和无机颗粒。我们表明,使用细胞反应可以调整颗粒设计中的关键方面,如颗粒-颗粒相互作用、孔径和大分子可及性。所得颗粒的耐久性为形状保持转化为金属、半导体和铁磁颗粒和组装体提供了机会。将细胞反应用作“结构导向剂”的能力为设计胶体尺度材料提供了一个前所未有的工具集。