Burke Molly K, Liti Gianni, Long Anthony D
Department of Ecology and Evolutionary Biology, University of California, Irvine
Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284-INSERM U1081, Faculté de Médecine, Université de Nice Sophia Antipolis, Nice, France.
Mol Biol Evol. 2014 Dec;31(12):3228-39. doi: 10.1093/molbev/msu256. Epub 2014 Aug 28.
In "evolve-and-resequence" (E&R) experiments, whole-genome sequence data from laboratory-evolved populations can potentially uncover mechanisms of adaptive change. E&R experiments with initially isogenic, asexually reproducing microbes have repeatedly shown that beneficial de novo mutations drive adaptation, and these mutations are not shared among independently evolving replicate populations. Recent E&R experiments with higher eukaryotes that maintain genetic variation via sexual reproduction implicate largely different mechanisms; adaptation may act primarily on pre-existing genetic variation and occur in parallel among independent populations. But this is currently a debated topic, and generalizing these conclusions is problematic because E&R experiments with sexual species are difficult to implement and important elements of experimental design suffer for practical reasons. We circumvent potentially confounding limitations with a yeast model capable of shuffling genotypes via sexual recombination. Our starting population consisted of a highly intercrossed diploid Saccharomyces cerevisiae initiated from four wild haplotypes. We imposed a laboratory domestication treatment on 12 independent replicate populations for 18 weeks, where each week included 2 days as diploids in liquid culture and a forced recombination/mating event. We then sequenced pooled population samples at weeks 0, 6, 12, and 18. We show that adaptation is highly parallel among replicate populations, and can be localized to a modest number of genomic regions. We also demonstrate that despite hundreds of generations of evolution and large effective population sizes, de novo beneficial mutations do not play a large role in this adaptation. Further, we have high power to detect the signal of change in these populations but show how this power is dramatically reduced when fewer timepoints are sampled, or fewer replicate populations are analyzed. As ours is the most highly replicated and sampled E&R study in a sexual species to date, this evokes important considerations for past and future experiments.
在“进化与重测序”(E&R)实验中,来自实验室进化群体的全基因组序列数据有可能揭示适应性变化的机制。对最初为同基因的无性繁殖微生物进行的E&R实验反复表明,有益的新生突变驱动适应性,并且这些突变在独立进化的重复群体中并不共享。最近对通过有性繁殖维持遗传变异的高等真核生物进行的E&R实验暗示了截然不同的机制;适应性可能主要作用于预先存在的遗传变异,并在独立群体中并行发生。但这目前是一个有争议的话题,将这些结论推广存在问题,因为对有性物种进行E&R实验很难实施,而且出于实际原因,实验设计的重要要素也存在缺陷。我们使用一种能够通过有性重组改组基因型的酵母模型,规避了潜在的混淆限制。我们的起始群体由来自四个野生单倍型的高度杂交二倍体酿酒酵母组成。我们对12个独立的重复群体进行了为期18周的实验室驯化处理,其中每周包括2天在液体培养中作为二倍体以及一次强制重组/交配事件。然后我们在第0、6、12和18周对混合群体样本进行了测序。我们表明,适应性在重复群体中高度并行,并且可以定位到数量不多的基因组区域。我们还证明,尽管经过了数百代的进化和较大的有效群体规模,但新生有益突变在这种适应性中并不起很大作用。此外,我们有很高的能力检测这些群体中的变化信号,但也展示了在采样时间点较少或分析的重复群体较少时,这种能力会如何大幅降低。由于我们的研究是迄今为止对有性物种进行的最具重复性和采样量的E&R研究,这引发了对过去和未来实验的重要思考。