Maier Christoph, Dickhaus Hartmut
Heidelberg University, Institute of Medical Biometry and Informatics, Heidelberg, Germany; Heilbronn University, Faculty of Informatics, Heilbronn, Germany.
Heidelberg University, Institute of Medical Biometry and Informatics, Heidelberg, Germany.
J Electrocardiol. 2014 Nov-Dec;47(6):826-30. doi: 10.1016/j.jelectrocard.2014.07.017. Epub 2014 Aug 2.
Present methods to extract respiratory myogram interference (RMI) from the Holter-ECG and assess effect of supraventricular arrhythmias (SVAs) onto ECG-based detection of sleep-related breathing disorders (SRBDs) and AHI estimation.
RMI was quantified as residual energy after ECG cancellation or high-pass filtering for different windowing constellations. In 140 cases without (SET_A) and 10 cases with persistent SVAs (SET_B), respiratory polysomnogram annotations served as reference for SRDB detection from Holter-ECGs. We applied our previously published method to identify SRDBs in 1-min epochs and estimate the AHI based on joint modulations in RMI and QRS-area.
Sensitivity and specificity of 0.855/0.860 in SET_A dropped to 0.831/0.75 in SET_B. A significantly higher number of wake events in SET_B likely contribute to the asymmetric decrease and is consistent with a tendency to overestimate the AHI.
Despite reduced accuracy, RMI and QRS-area appear relatively robust against SVA and promise Holter-based detection at least of medium to severe SRBDs also in patients with SVAs.
介绍从动态心电图中提取呼吸肌电图干扰(RMI)的方法,并评估室上性心律失常(SVA)对基于心电图检测睡眠相关呼吸障碍(SRBD)及睡眠呼吸暂停低通气指数(AHI)估计的影响。
通过不同窗口组合,经心电图消除或高通滤波后,将RMI量化为残余能量。在140例无持续性SVA的患者(A组)和10例有持续性SVA的患者(B组)中,多导睡眠图注释作为动态心电图检测SRBD的参考。我们应用先前发表的方法在1分钟时段内识别SRBD,并基于RMI和QRS波面积的联合调制估计AHI。
A组的灵敏度和特异度分别为0.855/0.860,而在B组中降至0.831/0.75。B组中明显更多的清醒事件可能导致了这种不对称下降,并且与高估AHI的趋势一致。
尽管准确性有所降低,但RMI和QRS波面积对SVA似乎相对稳健,有望在患有SVA的患者中至少基于动态心电图检测中度至重度SRBD。