Xue Jun, Laine Roger A, Matta Khushi L
Department of Cancer Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
Departments of Biological Sciences and Chemistry, Louisiana State University and A&M College, Baton Rouge, LA 70803, USA; TumorEnd, LLC, Louisiana Emerging Technology Center, Baton Rouge, LA 70803, USA.
J Proteomics. 2015 Jan 1;112:224-49. doi: 10.1016/j.jprot.2014.07.013. Epub 2014 Aug 29.
Searchable mass spectral libraries for glycans may be enhanced using a B2 ion library. Using a quadrupole ion-trap mass spectrometer, successive fragmentations of sodiated oligosaccharides were carried out in the positive ion mode. In B,Y-type fragmentation, disaccharide B2 ions are generated which correspond to specific glycosidic linkages using progressive MS stages. Fragmentation of "B2 ions" corresponding to glycosidic linkages such as Hex-Fuc, Hex-Hex, Hex-HexNAc, HexNAc-Hex and HexNAc-HexNAc, were systematically studied in low energy CID and collected to form a "B2 library". Linkages produce characteristic fragmentation patterns in the absence of cross-ring fragmentation. Patterns of "B2 ions" rely on relative stability of glycosidic bonds and carbohydrate-metal complexes in the gas phase. MS(n) studies of linear, branched trisaccharides and tetrasaccharides show that isomers for which B2 ion information is not available are rarely a problem in practice by their absence in an isomeric sequence or by their scarcity in nature. This MS strategy for linkage determination of carbohydrates aided by a "B2 library" was developed with a scope for expansion, providing an improved tool for glycomics. We validated this method examining levels of expressed activities of two glycosyl transferases in cancer cell lines: β3(B3GALNT2) and β4GalNAcT(B4GALNT3&4) that generate GalNAcβ3GlcNAcβ and GalNAcβ4GlcNAcβ.
Glycosylation is an important class of the "postranslationome", which includes manifold aspects of post-translational protein modification, affecting protein conformation, providing ligands for protein receptors [1-5], and encoding unique haptenic [6,7] or antigenic markers for oncology [8-11] and other applications. Identification of individual monomeric units, linkages, ring size, branching and anomerity has posed significant challenges to mass spectrometrists. MS(n) is a growing key instrumental method to differentiate among isomers [12]. While the potential isomers in oligosaccharides are impossibly large [12], likely possibilities can be limited by the biological system, including the expressed glycosyl transferases [13-20]. Mass spectra from sequential stages of collision activation (MS(n)) can supply structural details for precise characterization of linkage, monomer ID, substitutions, anomerity and branching [21-25]. There is a fundamental need for high throughput tools in glycomics to complement proteome studies. In that regard, nothing could be more important than searchable spectral library files for structural confirmation. The National Academy of Science (NAS) report (http://glyco.nas.edu) recommends the need of more than 10,000 synthetic structures of carbohydrates to advance the field of glycomics. This study demonstrates that the general reproducibility of ion trap spectra, and energy independence from modes of ionization and collisional activation, make compiling an MS(n) library for carbohydrate identification an achievable research target [26]. We intend to use the new B2 library for carbohydrate differences found on cancers, where we profile the glycosyltransferases to predict classes of potential structures, and use the library for MS identification of the expected cohort of altered structures.
使用B2离子库可增强聚糖的可搜索质谱库。使用四极杆离子阱质谱仪,在正离子模式下对钠化寡糖进行连续碎片化。在B、Y型碎片化过程中,利用逐步质谱阶段生成与特定糖苷键相对应的二糖B2离子。在低能碰撞诱导解离(CID)中系统研究了对应于糖苷键(如己糖-岩藻糖、己糖-己糖、己糖-N-乙酰己糖胺、N-乙酰己糖胺-己糖和N-乙酰己糖胺-N-乙酰己糖胺)的“B2离子”的碎片化,并收集形成一个“B2库”。在不存在交叉环碎片化的情况下,这些键会产生特征性的碎片化模式。“B2离子”的模式取决于气相中糖苷键和碳水化合物-金属络合物的相对稳定性。对线性、分支三糖和四糖的MS(n)研究表明,在实际中,对于那些无法获得B2离子信息的异构体,由于它们在异构体序列中不存在或在自然界中稀少,很少会成为问题。这种借助“B2库”进行碳水化合物连接测定的质谱策略具有扩展的空间,为糖组学提供了一种改进的工具。我们通过检测癌细胞系中两种糖基转移酶的表达活性水平来验证该方法:生成GalNAcβ3GlcNAcβ的β3(B3GALNT2)和生成GalNAcβ4GlcNAcβ的β4GalNAcT(B4GALNT3&4)。
糖基化是“翻译后组学”的一个重要类别,它包括翻译后蛋白质修饰的多个方面,影响蛋白质构象,为蛋白质受体提供配体[1 - 5],并为肿瘤学[8 - 11]及其他应用编码独特的半抗原[6,7]或抗原标记。识别单个单体单元(单糖)、连接方式、环大小、分支和异头物对质谱学家构成了重大挑战。MS(n)是区分异构体的一种日益重要的关键仪器方法[12]。虽然寡糖中的潜在异构体数量多得难以想象[12],但可能的异构体可以受到生物系统的限制,包括表达的糖基转移酶[13 - 20]。碰撞激活的连续阶段(MS(n))产生的质谱图可以提供结构细节,用于精确表征连接方式、单体识别、取代基、异头物和分支[21 - 25]。在糖组学中,迫切需要高通量工具来补充蛋白质组研究。在这方面,没有什么比可搜索的光谱库文件用于结构确认更重要的了。美国国家科学院(NAS)的报告(http://glyco.nas.edu)建议需要超过10000种碳水化合物的合成结构来推动糖组学领域的发展。这项研究表明,离子阱质谱图的一般重现性以及与电离模式和碰撞激活能量的独立性,使得编制用于碳水化合物鉴定的MS(n)库成为一个可实现的研究目标[26]。我们打算将新的B2库用于发现癌症上的碳水化合物差异,在那里我们分析糖基转移酶以预测潜在结构的类别,并使用该库对预期的结构改变群体进行质谱鉴定。