Suppr超能文献

骨关节炎的生物标志物和蛋白质组学分析。

Biomarkers and proteomic analysis of osteoarthritis.

机构信息

Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, United States; Department of Pathology, Duke University School of Medicine, Duke University, Durham, NC, United States.

Department of Clinical Sciences, Lund University, Lund, Sweden.

出版信息

Matrix Biol. 2014 Oct;39:56-66. doi: 10.1016/j.matbio.2014.08.012. Epub 2014 Aug 30.

Abstract

Our friend and colleague, Dr. Dick Heinegård, contributed greatly to the understanding of joint tissue biochemistry, the discovery and validation of arthritis-related biomarkers and the establishment of methodology for proteomic studies in osteoarthritis (OA). To date, discovery of OA-related biomarkers has focused on cartilage, synovial fluid and serum. Methods, such as affinity depletion and hyaluronidase treatment have facilitated proteomics discovery research from these sources. Osteoarthritis usually involves multiple joints; this characteristic makes it easier to detect OA with a systemic biomarker but makes it hard to delineate abnormalities of individual affected joints. Although the abundance of cartilage proteins in urine may generally be lower than other tissue/sample sources, the protein composition of urine is much less complex and its collection is non-invasive thereby facilitating the development of patient friendly biomarkers. To date however, relatively few proteomics studies have been conducted in OA urine. Proteomics strategies have identified many proteins that may relate to pathological mechanisms of OA. Further targeted approaches to validate the role of these proteins in OA are needed. Herein we summarize recent proteomic studies related to joint tissues and the cohorts used; a clear understanding of the cohorts is important for this work as we expect that the decisive discoveries of OA-related biomarkers rely on comprehensive phenotyping of healthy non-OA and OA subjects. Besides the common phenotyping criteria that include, gender, age, and body mass index (BMI), it is essential to collect data on symptoms and signs of OA outside the index joints and to bolster this with objective imaging data whenever possible to gain the most precise appreciation of the total burden of disease. Proteomic studies on systemic biospecimens, such as serum and urine, rely on comprehensive phenotyping data to unravel the true meaning of the proteomic results.

摘要

我们的朋友和同事 Dick Heinegård 博士在关节组织生物化学、关节炎相关生物标志物的发现和验证以及骨关节炎(OA)蛋白质组学研究方法的建立方面做出了巨大贡献。迄今为止,OA 相关生物标志物的发现主要集中在软骨、滑液和血清上。亲和层析和透明质酸酶处理等方法促进了这些来源的蛋白质组学发现研究。骨关节炎通常涉及多个关节;这一特征使得使用系统性生物标志物更容易检测到 OA,但难以描绘受影响个体关节的异常。虽然尿液中软骨蛋白的丰度通常低于其他组织/样本来源,但尿液的蛋白质组成要简单得多,且其采集是非侵入性的,从而有利于开发患者友好型生物标志物。然而,迄今为止,OA 尿液的蛋白质组学研究相对较少。蛋白质组学策略已经鉴定出许多可能与 OA 病理机制相关的蛋白质。需要进一步进行有针对性的方法来验证这些蛋白质在 OA 中的作用。本文总结了与关节组织相关的最新蛋白质组学研究及其使用的队列;对队列的清晰理解对这项工作很重要,因为我们预计 OA 相关生物标志物的决定性发现依赖于对健康非 OA 和 OA 受试者的综合表型分析。除了包括性别、年龄和体重指数(BMI)在内的常见表型标准外,还必须收集索引关节外 OA 的症状和体征数据,并尽可能利用客观的成像数据来增强对疾病总负担的最准确认识。系统性生物样本(如血清和尿液)的蛋白质组学研究依赖于全面的表型数据来揭示蛋白质组学结果的真正含义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验