Abate Francesco, Zairis Sakellarios, Ficarra Elisa, Acquaviva Andrea, Wiggins Chris H, Frattini Veronique, Lasorella Anna, Iavarone Antonio, Inghirami Giorgio, Rabadan Raul
Department of Biomedical Informatics, Columbia University, 1130 St. Nicholas Ave, New York, NY, 10032, USA.
Center for Computational Biology and Bioinformatics, Columbia University, 1130 St. Nicholas Ave, New York, NY, 10032, USA.
BMC Syst Biol. 2014 Sep 4;8:97. doi: 10.1186/s12918-014-0097-z.
The extraordinary success of imatinib in the treatment of BCR-ABL1 associated cancers underscores the need to identify novel functional gene fusions in cancer. RNA sequencing offers a genome-wide view of expressed transcripts, uncovering biologically functional gene fusions. Although several bioinformatics tools are already available for the detection of putative fusion transcripts, candidate event lists are plagued with non-functional read-through events, reverse transcriptase template switching events, incorrect mapping, and other systematic errors. Such lists lack any indication of oncogenic relevance, and they are too large for exhaustive experimental validation.
We have designed and implemented a pipeline, Pegasus, for the annotation and prediction of biologically functional gene fusion candidates. Pegasus provides a common interface for various gene fusion detection tools, reconstruction of novel fusion proteins, reading-frame-aware annotation of preserved/lost functional domains, and data-driven classification of oncogenic potential. Pegasus dramatically streamlines the search for oncogenic gene fusions, bridging the gap between raw RNA-Seq data and a final, tractable list of candidates for experimental validation.
We show the effectiveness of Pegasus in predicting new driver fusions in 176 RNA-Seq samples of glioblastoma multiforme (GBM) and 23 cases of anaplastic large cell lymphoma (ALCL).
伊马替尼在治疗与BCR-ABL1相关的癌症方面取得了非凡成功,这凸显了识别癌症中新型功能性基因融合的必要性。RNA测序提供了全基因组范围内的转录本表达情况,从而揭示具有生物学功能的基因融合。尽管已经有几种生物信息学工具可用于检测假定的融合转录本,但候选事件列表中充斥着无功能的通读事件、逆转录酶模板切换事件、错误映射以及其他系统性错误。此类列表缺乏任何致癌相关性的指示,而且规模太大,无法进行详尽的实验验证。
我们设计并实施了一个名为Pegasus的流程,用于对具有生物学功能的基因融合候选物进行注释和预测。Pegasus为各种基因融合检测工具提供了一个通用接口,用于重建新型融合蛋白、对保留/丢失的功能域进行读框感知注释以及对致癌潜力进行数据驱动分类。Pegasus极大地简化了致癌基因融合的搜索过程,弥合了原始RNA测序数据与最终可供实验验证的易于处理的候选列表之间的差距。
我们展示了Pegasus在预测176个多形性胶质母细胞瘤(GBM)RNA测序样本和23例间变性大细胞淋巴瘤(ALCL)中的新驱动融合方面的有效性。