Suppr超能文献

在接受胆钙化醇治疗的慢性肾脏病患者中,25-羟基维生素D3向24,25-二羟基维生素D3的转化减少。

Decreased conversion of 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3 following cholecalciferol therapy in patients with CKD.

作者信息

Stubbs Jason R, Zhang Shiqin, Friedman Peter A, Nolin Thomas D

机构信息

The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas;

Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and.

出版信息

Clin J Am Soc Nephrol. 2014 Nov 7;9(11):1965-73. doi: 10.2215/CJN.03130314. Epub 2014 Sep 2.

Abstract

BACKGROUND AND OBJECTIVES

Elevated concentrations of fibroblast growth factor 23 (FGF23) are postulated to promote 25-hydroxyvitamin D (25[OH]D) insufficiency in CKD by stimulating 24-hydroxylation of this metabolite, leading to its subsequent degradation; however, prospective human studies testing this relationship are lacking.

DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: An open-label prospective study was conducted from October 2010 through July 2012 to compare the effect of 8 weeks of oral cholecalciferol therapy (50,000 IU twice weekly) on the production of 24,25(OH)2D3 in vitamin D-insufficient patients with CKD (n=15) and controls with normal kidney function (n=15). Vitamin D metabolites were comprehensively profiled at baseline and after treatment, along with FGF23 and other mineral metabolism parameters.

RESULTS

Vitamin D3 and 25(OH)D3 concentrations increased equivalently in the CKD and control groups following cholecalciferol treatment (median D3 change, 8.6 ng/ml [interquartile range, 3.9-25.6 ng/ml] for controls versus 12.6 ng/ml [6.9-41.2 ng/ml] for CKD [P=0.15]; 25(OH)D3 change, 39.2 ng/ml [30.9-47.2 ng/ml] for controls versus 39.9 ng/ml [31.5-44.1 ng/ml] for CKD [P=0.58]). Likewise, the absolute increase in 1α,25(OH)2D3 was similar between CKD participants and controls (change, 111.2 pg/ml [64.3-141.6 pg/ml] for controls versus 101.1 pg/ml [74.2-123.1 pg/ml] for CKD; P=0.38). Baseline and post-treatment 24,25(OH)2D3 concentrations were lower in the CKD group; moreover, the absolute increase in 24,25(OH)2D3 after therapy was markedly smaller in patients with CKD (change, 2.8 ng/ml [2.3-3.5 ng/ml] for controls versus 1.2 ng/ml [0.6-1.9 ng/ml] for patients with CKD; P<0.001). Furthermore, higher baseline FGF23 concentrations were associated with smaller increments in 24,25(OH)2D3 for individuals with CKD; this association was negated after adjustment for eGFR by multivariate analysis.

CONCLUSIONS

Patients with CKD exhibit an altered ability to increase serum 24,25(OH)2D3 after cholecalciferol therapy, suggesting decreased 24-hydroxylase activity in CKD. The observed relationship between baseline FGF23 and increments in 24,25(OH)2D3 further refutes the idea that FGF23 directly contributes to 25(OH)D insufficiency in CKD through stimulation of 24-hydroxylase activity.

摘要

背景与目的

推测成纤维细胞生长因子23(FGF23)浓度升高通过刺激25-羟基维生素D(25[OH]D)代谢产物的24-羟化作用,促进慢性肾脏病(CKD)患者出现25(OH)D不足,进而导致其随后降解;然而,尚无前瞻性人体研究验证这种关系。

设计、地点、参与者及测量方法:2010年10月至2012年7月进行了一项开放标签前瞻性研究,比较8周口服胆钙化醇治疗(每周两次,每次50,000 IU)对维生素D不足的CKD患者(n = 15)和肾功能正常的对照组(n = 15)中24,25(OH)2D3产生的影响。在基线和治疗后全面分析维生素D代谢产物,以及FGF23和其他矿物质代谢参数。

结果

胆钙化醇治疗后,CKD组和对照组的维生素D3和25(OH)D3浓度升高程度相当(对照组D3变化中位数为8.6 ng/ml[四分位间距,3.9 - 25.6 ng/ml],CKD组为12.6 ng/ml[6.9 - 41.2 ng/ml][P = 0.15];25(OH)D3变化,对照组为39.2 ng/ml[30.9 - 47.2 ng/ml],CKD组为39.9 ng/ml[31.5 - 44.1 ng/ml][P = 0.58])。同样,CKD参与者和对照组中1α,25(OH)2D3的绝对增加量相似(变化,对照组为111.2 pg/ml[64.3 - 141.6 pg/ml],CKD组为101.1 pg/ml[74.2 - 123.1 pg/ml];P = 0.38)。CKD组的基线和治疗后24,25(OH)2D3浓度较低;此外,CKD患者治疗后24,25(OH)2D3的绝对增加量明显较小(变化,对照组为2.8 ng/ml[2.3 - 3.5 ng/ml],CKD患者为1.2 ng/ml[0.6 - 1.9 ng/ml];P < 0.001)。此外,CKD患者中较高的基线FGF23浓度与24,25(OH)2D3的较小增加相关;多因素分析校正估算肾小球滤过率(eGFR)后,这种关联消失。

结论

CKD患者在胆钙化醇治疗后增加血清24,25(OH)2D3的能力发生改变,提示CKD患者24-羟化酶活性降低。观察到的基线FGF23与24,25(OH)2D3增加之间的关系进一步反驳了FGF23通过刺激24-羟化酶活性直接导致CKD患者25(OH)D不足的观点。

相似文献

1
Decreased conversion of 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3 following cholecalciferol therapy in patients with CKD.
Clin J Am Soc Nephrol. 2014 Nov 7;9(11):1965-73. doi: 10.2215/CJN.03130314. Epub 2014 Sep 2.
5
Effects of Vitamin D Supplementation on Vitamin D Metabolism in Health and CKD.
Clin J Am Soc Nephrol. 2017 Sep 7;12(9):1498-1506. doi: 10.2215/CJN.00530117. Epub 2017 Aug 2.
6
Effect of Cholecalciferol therapy on serum FGF in vitamin D deficient patients: a randomized clinical trial.
J Endocrinol Invest. 2018 Mar;41(3):299-306. doi: 10.1007/s40618-017-0739-2. Epub 2017 Aug 9.
7
Serum concentrations of 1,25-dihydroxyvitamin D2 and 1,25-dihydroxyvitamin D3 in response to vitamin D2 and vitamin D3 supplementation.
J Clin Endocrinol Metab. 2013 Mar;98(3):973-9. doi: 10.1210/jc.2012-2114. Epub 2013 Feb 5.
8
Differential Effects of Oral Boluses of Vitamin D2 vs Vitamin D3 on Vitamin D Metabolism: A Randomized Controlled Trial.
J Clin Endocrinol Metab. 2019 Dec 1;104(12):5831-5839. doi: 10.1210/jc.2019-00207.
10
Regulation of fibroblast growth factor-23 in chronic kidney disease.
Nephrol Dial Transplant. 2007 Nov;22(11):3202-7. doi: 10.1093/ndt/gfm347. Epub 2007 Jun 13.

引用本文的文献

4
When and How to Evaluate Vitamin D Status? A Viewpoint from the Belgian Bone Club.
Nutrients. 2024 Jul 23;16(15):2388. doi: 10.3390/nu16152388.
5
Vitamin D supplementation in primary hyperparathyroidism: effects on 1,25(OH) vitamin D and FGF23 levels.
J Endocrinol Invest. 2025 Jan;48(1):91-98. doi: 10.1007/s40618-024-02422-2. Epub 2024 Jun 26.
6
Effects of hexagonal boron nitride on mechanical properties of bone cement (Polymethylmethacrylate).
Jt Dis Relat Surg. 2024 Feb 26;35(2):340-346. doi: 10.52312/jdrs.2024.1513.
7
Novel Approaches in Chronic Renal Failure without Renal Replacement Therapy: A Review.
Biomedicines. 2023 Oct 18;11(10):2828. doi: 10.3390/biomedicines11102828.
8
Scribble scrambles parathyroid hormone receptor interactions to regulate phosphate and vitamin D homeostasis.
Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2220851120. doi: 10.1073/pnas.2220851120. Epub 2023 May 30.
9
Physiologically Based Pharmacokinetic Modeling of Vitamin D and Metabolites in Vitamin D-Insufficient Patients.
Drug Metab Dispos. 2022 Sep;50(9):1161-1169. doi: 10.1124/dmd.121.000609. Epub 2022 Jul 2.
10
Low serum 1,25(OH)2D3 in end-stage renal disease: is reduced 1α-hydroxylase the only problem?
Endocr Connect. 2021 Oct 11;10(10):1291-1298. doi: 10.1530/EC-21-0372.

本文引用的文献

2
Reduced renal α-Klotho expression in CKD patients and its effect on renal phosphate handling and vitamin D metabolism.
PLoS One. 2014 Jan 23;9(1):e86301. doi: 10.1371/journal.pone.0086301. eCollection 2014.
4
Vitamin D bioavailability and catabolism in pediatric chronic kidney disease.
Pediatr Nephrol. 2013 Sep;28(9):1843-53. doi: 10.1007/s00467-013-2493-9. Epub 2013 Jun 2.
6
Assessment of 24,25(OH)2D levels does not support FGF23-mediated catabolism of vitamin D metabolites.
Kidney Int. 2012 Nov;82(10):1061-70. doi: 10.1038/ki.2012.222. Epub 2012 Jun 27.
7
Circulating interferon-γ correlates with 1,25(OH)D and the 1,25(OH)D-to-25(OH)D ratio.
Cytokine. 2012 Oct;60(1):23-6. doi: 10.1016/j.cyto.2012.05.015. Epub 2012 Jun 15.
9
An inducible cytochrome P450 3A4-dependent vitamin D catabolic pathway.
Mol Pharmacol. 2012 Apr;81(4):498-509. doi: 10.1124/mol.111.076356. Epub 2011 Dec 28.
10
CYP24A1 and kidney disease.
Curr Opin Nephrol Hypertens. 2011 Jul;20(4):337-44. doi: 10.1097/MNH.0b013e3283477a7b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验