Wang Jinfeng, Zhao Meng, Zhang Min, Liu Yang, Li Hong
School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China.
School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China.
ScientificWorldJournal. 2014;2014:371413. doi: 10.1155/2014/371413. Epub 2014 Jul 24.
We discuss and analyze an H(1)-Galerkin mixed finite element (H(1)-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H(1)-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H(1)-GMFE method. Based on the discussion on the theoretical error analysis in L(2)-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H(1)-norm. Moreover, we derive and analyze the stability of H(1)-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure.
我们讨论并分析一种用于求解时间分数阶电报方程数值解的H(1)-伽辽金混合有限元(H(1)-GMFE)方法。我们引入一个辅助变量将原方程简化为低阶耦合方程,然后用两个重要变量构建一个H(1)-GMFE格式。我们使用有限差分方法离散Caputo时间分数阶导数,并应用H(1)-GMFE方法逼近空间方向。基于对一维情形下标量未知量及其梯度在L(2)范数下的理论误差分析,我们得到了时空方向上的最优收敛阶。此外,我们还推导了标量未知量在H(1)范数下的最优误差结果。而且,我们推导并分析了H(1)-GMFE格式的稳定性,并给出了二维或三维情形下的先验误差估计结果。为了验证我们的理论分析,我们给出了使用Matlab程序进行数值计算的一些结果。