Suppr超能文献

时间分数阶电报方程的H1-Galerkin混合有限元方法的数值分析

Numerical analysis of an H1-Galerkin mixed finite element method for time fractional telegraph equation.

作者信息

Wang Jinfeng, Zhao Meng, Zhang Min, Liu Yang, Li Hong

机构信息

School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China.

School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China.

出版信息

ScientificWorldJournal. 2014;2014:371413. doi: 10.1155/2014/371413. Epub 2014 Jul 24.

Abstract

We discuss and analyze an H(1)-Galerkin mixed finite element (H(1)-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H(1)-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H(1)-GMFE method. Based on the discussion on the theoretical error analysis in L(2)-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H(1)-norm. Moreover, we derive and analyze the stability of H(1)-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure.

摘要

我们讨论并分析一种用于求解时间分数阶电报方程数值解的H(1)-伽辽金混合有限元(H(1)-GMFE)方法。我们引入一个辅助变量将原方程简化为低阶耦合方程,然后用两个重要变量构建一个H(1)-GMFE格式。我们使用有限差分方法离散Caputo时间分数阶导数,并应用H(1)-GMFE方法逼近空间方向。基于对一维情形下标量未知量及其梯度在L(2)范数下的理论误差分析,我们得到了时空方向上的最优收敛阶。此外,我们还推导了标量未知量在H(1)范数下的最优误差结果。而且,我们推导并分析了H(1)-GMFE格式的稳定性,并给出了二维或三维情形下的先验误差估计结果。为了验证我们的理论分析,我们给出了使用Matlab程序进行数值计算的一些结果。

相似文献

1
Numerical analysis of an H1-Galerkin mixed finite element method for time fractional telegraph equation.
ScientificWorldJournal. 2014;2014:371413. doi: 10.1155/2014/371413. Epub 2014 Jul 24.
2
A new mixed element method for a class of time-fractional partial differential equations.
ScientificWorldJournal. 2014 Mar 9;2014:141467. doi: 10.1155/2014/141467. eCollection 2014.
3
A new expanded mixed element method for convection-dominated Sobolev equation.
ScientificWorldJournal. 2014 Feb 18;2014:297825. doi: 10.1155/2014/297825. eCollection 2014.
4
A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation.
ScientificWorldJournal. 2013 Jun 22;2013:756281. doi: 10.1155/2013/756281. Print 2013.
5
Leapfrog/finite element method for fractional diffusion equation.
ScientificWorldJournal. 2014;2014:982413. doi: 10.1155/2014/982413. Epub 2014 Apr 3.
6
An efficient numerical method for a time-fractional telegraph equation.
Math Biosci Eng. 2022 Mar 9;19(5):4672-4689. doi: 10.3934/mbe.2022217.
7
High order approximation on non-uniform meshes for generalized time-fractional telegraph equation.
MethodsX. 2022 Nov 4;9:101905. doi: 10.1016/j.mex.2022.101905. eCollection 2022.
9
An efficient computational scheme for solving coupled time-fractional Schrödinger equation via cubic B-spline functions.
PLoS One. 2024 May 16;19(5):e0296909. doi: 10.1371/journal.pone.0296909. eCollection 2024.
10
Error estimates of finite element methods for fractional stochastic Navier-Stokes equations.
J Inequal Appl. 2018;2018(1):284. doi: 10.1186/s13660-018-1880-y. Epub 2018 Oct 19.

本文引用的文献

1
Leapfrog/finite element method for fractional diffusion equation.
ScientificWorldJournal. 2014;2014:982413. doi: 10.1155/2014/982413. Epub 2014 Apr 3.
2
A new mixed element method for a class of time-fractional partial differential equations.
ScientificWorldJournal. 2014 Mar 9;2014:141467. doi: 10.1155/2014/141467. eCollection 2014.
3
A semi-discrete finite element method for a class of time-fractional diffusion equations.
Philos Trans A Math Phys Eng Sci. 2013 Apr 1;371(1990):20120268. doi: 10.1098/rsta.2012.0268. Print 2013 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验