Zhao Zhengang, Zheng Yunying
Department of Fundamental Courses, Shanghai Customs College, Shanghai 201204, China.
School of Mathematical Sciences, Huaibei Normal University, Huaibei 235000, China.
ScientificWorldJournal. 2014;2014:982413. doi: 10.1155/2014/982413. Epub 2014 Apr 3.
We analyze a fully discrete leapfrog/Galerkin finite element method for the numerical solution of the space fractional order (fractional for simplicity) diffusion equation. The generalized fractional derivative spaces are defined in a bounded interval. And some related properties are further discussed for the following finite element analysis. Then the fractional diffusion equation is discretized in space by the finite element method and in time by the explicit leapfrog scheme. For the resulting fully discrete, conditionally stable scheme, we prove an L (2)-error bound of finite element accuracy and of second order in time. Numerical examples are included to confirm our theoretical analysis.
我们分析了一种用于求解空间分数阶(为简便起见简称为分数阶)扩散方程数值解的全离散蛙跳/伽辽金有限元方法。广义分数阶导数空间在一个有界区间内定义。并且为了后续的有限元分析,进一步讨论了一些相关性质。然后,分数阶扩散方程在空间上用有限元方法离散,在时间上用显式蛙跳格式离散。对于所得的全离散、条件稳定格式,我们证明了有限元精度的(L^2)误差界以及时间上的二阶精度。文中包含数值例子以证实我们的理论分析。