Suppr超能文献

Induction of a novel damage-specific DNA binding protein correlates with enhanced DNA repair in primate cells.

作者信息

Protić M, Hirschfeld S, Tsang A P, Wagner M, Dixon K, Levine A S

机构信息

Section on Viruses and Cellular Biology, National Institute of Child Health and Human Development, Bethesda, Maryland 20892.

出版信息

Mol Toxicol. 1989 Oct-Dec;2(4):255-70.

PMID:2518795
Abstract

Pretreatment of mammalian cell with DNA-damaging agents, such as UV light or mitomycin C, but not the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA), results in the enhanced repair of subsequently transfected UV-damaged expression vectors. To determine the cellular factors that are responsible for this enhancement, we have used a modified gel retardation assay to detect the proteins that interact with damaged DNA. We have identified a constitutive DNA binding protein in extracts from primate cells that has a high affinity for UV-irradiated double-stranded DNA. Cells pretreated with UV light, mitomycin C, or aphidicolin, but not TPA or serum starvation, have higher levels of this damage-specific DNA binding (DDB) protein. These results suggest that the signal for induction of DDB protein can either be damage to the DNA or interference with cellular DNA replication. The induction of DDB protein varies among primate cells with different phenotypes: (1) virus-transformed repair-proficient cells have partially or fully lost the ability to induce DDB protein above constitutive levels; (2) primary cells from repair-deficient xeroderma pigmentosum (XP) group C, and transformed XP groups A and D, show constitutive DDB protein, but do not show induced levels of this protein 48 h after UV; and (3) primary and transformed repair-deficient cells from one XP E patient are lacking both the constitutive and the induced DDB activity. The correlation between the induction of the DDB protein and the enhanced repair of UV-damaged expression vectors implies the involvement of the DDB protein in this inducible cellular response.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验