Liu Rui, Li Yuhao, Chang Jin, Waclawik Eric R, Sun Wenfang
Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States.
Inorg Chem. 2014 Sep 15;53(18):9516-30. doi: 10.1021/ic500646r. Epub 2014 Sep 5.
A series of Pt(II) diimine complexes bearing benzothiazolylfluorenyl (BTZ-F8), diphenylaminofluorenyl (NPh2-F8), or naphthalimidylfluorenyl (NI-F8) motifs on the bipyridyl or acetylide ligands (Pt-4-Pt-8), (i.e., {4,4'-bis[7-R1-F8-(≡)n-]bpy}Pt(7-R2-F8- ≡ -)2, where F8 = 9,9'-di(2-ethylhexyl)fluorene, bpy = 2,2'-bipyridine, Pt-4: R1 = R2 = BTZ, n = 0; Pt-5: R1 = BTZ, R2 = NI, n = 0; Pt-6: R1 = R2 = BTZ, n = 1; Pt-7: R1 = BTZ, R2 = NPh2, n = 1; Pt-8: R1 = NPh2, R2 = BTZ, n = 1) were synthesized. Their ground-state and excited-state properties and reverse saturable absorption performances were systematically investigated. The influence of these motifs on the photophysics of the complexes was investigated by spectroscopic methods and simulated by time-dependent density functional theory (TDDFT). The intense absorption bands below 410 nm for these complexes is assigned to predominantly (1)π,π* transitions localized on either the bipyridine or the acetylide ligands; while the broad low-energy absorption bands between 420 and 575 nm are attributed to essentially (1)MLCT (metal-to-ligand charge transfer)/(1)LLCT (ligand-to-ligand charge transfer) transitions, likely mixed with some (1)ILCT (intraligand charge transfer) transition for Pt-4-Pt-7, and predominantly (1)ILCT transition admixing with minor (1)MLCT/(1)LLCT characters for Pt-8. The different substituents on the acetylide and bipyridyl ligands, and the degrees of π-conjugation in the bipyridyl ligand influence both the (1)π,π* and charge transfer transitions pronouncedly. All complexes are emissive at room temperature. Upon excitation at their respective absorption band maxima, Pt-4, Pt-6, and Pt-8 exhibit acetylide ligand localized (1)π,π* fluorescence and (3)MLCT/(3)LLCT phosphorescence in CH2Cl2, while Pt-5 manifests (1)ILCT fluorescence and (3)ILCT phosphorescence. However, only (1)LLCT fluorescence was observed for Pt-7 at room temperature. The nanosecond transient absorption study was carried out for Pt-4-Pt-8 in CH3CN. Except for Pt-7 that contains NPh2 at the acetylide ligands, Pt-4-Pt-6 and Pt-8 all exhibit weak to moderate excited-state absorption in the visible spectral region. Reverse saturable absorption (RSA) of these complexes was demonstrated at 532 nm using 4.1 ns laser pulses in a 2 mm cuvette. The strength of RSA follows this trend: Pt-4 > Pt-5 > Pt-7 > Pt-6 > Pt-8. Incorporation of electron-donating substituent NPh2 on the bipyridyl ligand significantly decreases the RSA, while shorter π-conjugation in the bipyridyl ligand increases the RSA. Therefore, the substituent at either the acetylide ligands or the bipyridyl ligand could affect the singlet and triplet excited-state characteristics significantly, which strongly influences the RSA efficiency.
合成了一系列在联吡啶或乙炔配体上带有苯并噻唑基芴基(BTZ-F8)、二苯胺基芴基(NPh2-F8)或萘二甲酰亚胺基芴基(NI-F8)基团的Pt(II)二亚胺配合物(Pt-4 - Pt-8),即{4,4'-双[7-R1-F8-(≡)n-]bpy}Pt(7-R2-F8 - ≡ -)2,其中F8 = 9,9'-二(2-乙基己基)芴,bpy = 2,2'-联吡啶,Pt-4:R1 = R2 = BTZ,n = 0;Pt-5:R1 = BTZ,R2 = NI,n = 0;Pt-6:R1 = R2 = BTZ,n = 1;Pt-7:R1 = BTZ,R2 = NPh2,n = 1;Pt-8:R1 = NPh2,R2 = BTZ,n = 1。系统研究了它们的基态和激发态性质以及反饱和吸收性能。通过光谱方法研究了这些基团对配合物光物理性质的影响,并采用含时密度泛函理论(TDDFT)进行模拟。这些配合物在410 nm以下的强吸收带主要归因于(1)π,π跃迁,其定域在联吡啶或乙炔配体上;而在420至575 nm之间的宽低能吸收带主要归因于(1)MLCT(金属到配体电荷转移)/(1)LLCT(配体到配体电荷转移)跃迁,对于Pt-4 - Pt-7可能还混合了一些(1)ILCT(配体内电荷转移)跃迁,对于Pt-8主要是(1)ILCT跃迁并混合了少量(1)MLCT/(1)LLCT特征。乙炔和联吡啶配体上的不同取代基以及联吡啶配体中的π共轭程度对(1)π,π和电荷转移跃迁均有显著影响。所有配合物在室温下均有发光。在各自吸收带最大值处激发时,Pt-4、Pt-6和Pt-8在CH2Cl2中表现出乙炔配体定域的(1)π,π*荧光和(3)MLCT/(3)LLCT磷光,而Pt-5表现出(1)ILCT荧光和(3)ILCT磷光。然而,在室温下Pt-7仅观察到(1)LLCT荧光。对Pt-4 - Pt-8在CH3CN中进行了纳秒瞬态吸收研究。除了在乙炔配体上含有NPh2的Pt-7外,Pt-4 - Pt-6和Pt-8在可见光谱区域均表现出弱至中等强度的激发态吸收。在2 mm比色皿中使用4.1 ns激光脉冲在532 nm处证明了这些配合物的反饱和吸收(RSA)。RSA的强度遵循以下趋势:Pt-4 > Pt-5 > Pt-7 > Pt-6 > Pt-8。在联吡啶配体上引入供电子取代基NPh2会显著降低RSA,而联吡啶配体中较短的π共轭会增加RSA。因此,乙炔配体或联吡啶配体上的取代基会显著影响单重态和三重态激发态特征,这对RSA效率有很大影响。