Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States.
ACS Appl Mater Interfaces. 2013 Jul 24;5(14):6556-70. doi: 10.1021/am401133p. Epub 2013 Jul 2.
Four new heteroleptic cationic Ir(III) complexes bearing benzothiazolylfluorene motif on the bipyridine (N∧N) (1 and 2) and phenylpyridine (C∧N) (3 and 4) ligands are synthesized and characterized. The influence of the position of the substituent and the extent of π-conjugation on the photophysics of these complexes is systematically investigated by spectroscopic methods and simulated by time-dependent density functional theory (TDDFT). The complexes exhibit ligand-centered (1)π,π* transitions with admixtures of (1)ILCT (π(benzothiazolylfluorene) → π*(bpy)) and (1)MLCT (metal-to-ligand charge transfer) characters below 475 nm, and very weak (1,3)MLCT and (1,3)LLCT (ligand-to-ligand charge transfer) transitions above 475 nm. The emission of these complexes at room temperature in CH2Cl2 solutions is ascribed to be predominantly from the (3)MLCT/(3)LLCT states for 1 and from the (3)π,π* state for 2, while the emitting state of 3 and 4 are assigned to be an admixture of (3)MLCT, (3)LLCT, and (3)π,π* characters. The variations of the photophysical properties of 1-4 are attributed to different degrees of π-conjugation in the bipyridine and phenylpyridine ligands induced by different positions of the benzothiazolylfluorenyl substituents on the bipyridine ligand and different extents of π-conjugation in the phenylpyridine ligands, which alters the energy and lifetime of the lowest singlet and triplet excited states. 1-4 all possess broadband transient absorption (TA) upon nanosecond laser excitation, which extends from the visible to the NIR region. Therefore, 1-4 all exhibit strong reverse saturable absorption (RSA) at 532 nm for ns laser pulses. However, the TA of complexes 1, 2, and 3 are much stronger than that of 4. This feature, combined with the difference in ground-state absorption and triplet excited-state quantum yield, result in the difference in RSA strength, which follows this trend: 1 ≈ 2 ≈ 3 > 4. Therefore, complexes 1-3 are strong reverse saturable absorbers at 532 nm and could potentially be used as broadband nonlinear absorbing materials.
四种新型的异双核阳离子 Ir(III)配合物,其特征是联吡啶 (N∧N) (1 和 2) 和苯基吡啶 (C∧N) (3 和 4) 配体上带有苯并噻唑基芴基。通过光谱方法和时间相关密度泛函理论 (TDDFT) 模拟,系统地研究了取代基位置和 π 共轭程度对这些配合物光物理性质的影响。这些配合物在 475nm 以下表现出配体中心 (1)π,π跃迁,伴有 (1)ILCT(苯并噻唑基芴基→π(bpy)) 和 (1)MLCT(金属到配体电荷转移)特征,而在 475nm 以上则表现出非常弱的 (1,3)MLCT 和 (1,3)LLCT(配体到配体电荷转移)跃迁。在室温下,这些配合物在 CH2Cl2 溶液中的发射归因于 1 主要来自 (3)MLCT/(3)LLCT 态,2 主要来自 (3)π,π态,而 3 和 4 的发射态则被分配为 (3)MLCT、(3)LLCT 和 (3)π,π特征的混合物。1-4 的光物理性质的变化归因于苯并噻唑基芴基取代基在联吡啶配体上的不同位置和苯基吡啶配体中不同程度的 π 共轭导致的联吡啶和苯基吡啶配体的不同程度的 π 共轭,从而改变了最低单重态和三重态激发态的能量和寿命。1-4 在纳秒激光激发下都具有宽带瞬态吸收 (TA),从可见光延伸到近红外区域。因此,1-4 在 532nm 处对纳秒激光脉冲都表现出强烈的反向饱和吸收 (RSA)。然而,配合物 1、2 和 3 的 TA 比 4 要强得多。这种特性,结合基态吸收和三重态激发态量子产率的差异,导致 RSA 强度的差异,遵循以下趋势:1 ≈ 2 ≈ 3 > 4。因此,配合物 1-3 在 532nm 处是强的反向饱和吸收体,有可能用作宽带非线性吸收材料。