Zimmermann Michael T, Skliros Aris, Kloczkowski Andrzej, Jernigan Robert L
L. H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, IA 50011, USA ; Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA ; Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA.
L. H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, IA 50011, USA.
Immunome Res. 2011;7(5). doi: 10.4172/1745-7580.1000047.
Motions of the IgG structure are evaluated using normal mode analysis of an elastic network model to detect hinges, the dominance of low frequency modes, and the most important internal motions. One question we seek to answer is whether or not IgG hinge motions facilitate antigen binding. We also evaluate the protein crystal and packing effects on the experimental temperature factors and disorder predictions. We find that the effects of the protein environment on the crystallographic temperature factors may be misleading for evaluating specific functional motions of IgG. The extent of motion of the antigen binding domains is computed to show their large spatial sampling. We conclude that the IgG structure is specifically designed to facilitate large excursions of the antigen binding domains. Normal modes are shown as capable of computationally evaluating the hinge motions and the spatial sampling by the structure. The antigen binding loops and the major hinge appear to behave similarly to the rest of the structure when we consider the dominance of the low frequency modes and the extent of internal motion. The full IgG structure has a lower spectral dimension than individual F domains, pointing to more efficient information transfer through the antibody than through each domain. This supports the claim that the IgG structure is specifically constructed to facilitate antigen binding by coupling motion of the antigen binding loops with the large scale hinge motions.
利用弹性网络模型的正常模式分析来评估IgG结构的运动,以检测铰链、低频模式的主导地位以及最重要的内部运动。我们试图回答的一个问题是,IgG铰链运动是否有助于抗原结合。我们还评估了蛋白质晶体和堆积对实验温度因子及无序预测的影响。我们发现,蛋白质环境对晶体学温度因子的影响在评估IgG的特定功能运动时可能会产生误导。计算抗原结合结构域的运动程度以显示其较大的空间采样。我们得出结论,IgG结构经过特殊设计,以利于抗原结合结构域的大幅度移动。正常模式显示能够通过计算评估铰链运动和结构的空间采样。当我们考虑低频模式的主导地位和内部运动程度时,抗原结合环和主要铰链的行为似乎与结构的其他部分相似。完整的IgG结构比单个F结构域具有更低的光谱维度,这表明通过抗体传递信息比通过每个结构域更有效。这支持了这样一种观点,即IgG结构经过特殊构建,通过将抗原结合环的运动与大规模铰链运动相耦合来促进抗原结合。