Suppr超能文献

键的作用有多大:甲基封端的 Si(111)表面的结构、化学和物理性质。

What a difference a bond makes: the structural, chemical, and physical properties of methyl-terminated Si(111) surfaces.

机构信息

Beckman Institute and Kavli Nanoscience Institute, Division of Chemistry and Chemical Engineering, California Institute of Technology , 210 Noyes Laboratory, Pasadena, California 91125, United States.

出版信息

Acc Chem Res. 2014 Oct 21;47(10):3037-44. doi: 10.1021/ar500207y. Epub 2014 Sep 5.

Abstract

The chemical, electronic, and structural properties of surfaces are affected by the chemical termination of the surface. Two-step halogenation/alkylation of silicon provides a scalable, wet-chemical method for grafting molecules onto the silicon surface. Unlike other commonly studied wet-chemical methods of surface modification, such as self-assembly of monolayers on metals or hydrosilylation on silicon, the two-step method enables attachment of small alkyl chains, even methyl groups, to a silicon surface with high surface coverage and homogeneity. The methyl-terminated Si(111) surface, by comparison to hydrogen-terminated Si(111), offers a unique opportunity to study the effects of the first surface bond connecting the overlayer to the surface. This Account describes studies of methyl-terminated Si(111), which have shown that the H-Si(111) and CH3-Si(111) surfaces are structurally nearly identical, yet impart significantly different chemical and electronic properties to the resulting Si surface. The structure of methyl-terminated Si(111) formed by a two-step halogenation/methylation process has been studied by a variety of spectroscopic methods. A covalent Si-C bond is oriented normal to the surface, with the methyl group situated directly atop a surface Si atom. Multiple spectroscopic methods have shown that methyl groups achieve essentially complete coverage of the surface atoms while maintaining the atomically flat, terraced structure of the original H-Si(111) surface. Thus, the H-Si(111) and CH3-Si(111) surface share essentially identical structures aside from the replacement of a Si-H bond with a Si-C bond. Despite their structural similarity, hydrogen and methyl termination exhibit markedly different chemical passivation. Specifically, CH3-Si(111) exhibits significantly greater oxidation resistance than H-Si(111) in air and in aqueous electrolyte under photoanodic current flow. Both surfaces exhibit similar thermal stability in vacuum, and the Si-H and Si-C bond strengths are expected to be very similar, so the results suggest that methyl termination presents a greater kinetic barrier to oxidation of the underlying Si surface. Hydrogen termination of Si(111) provides nearly perfect electronic passivation of surface states (i.e., less than 1 electronic defect per 40 million surface atoms), but this electronic passivation is rapidly degraded by oxidation in air or under electrochemical conditions. In contrast, methyl termination provides excellent electronic passivation that resists degradation due to oxidation. Moreover, alkylation modifies the surface electronic structure by creating a surface dipole that effectively changes the electron affinity of the Si surface, facilitating modification of the charge-transfer kinetics across Si/metal or Si/electrolyte junctions. This Account also briefly describes recent studies of mixed monolayers formed by the halogenation/alkylation of silicon. Mixed monolayers allow attachment of bulkier groups that enable secondary chemistry at the surface (e.g., attachment of molecular catalysts or seeding of atomic layer deposition) to be combined with methyl termination of remaining unreacted surface sites. Thus, secondary chemistry can be enabled while maintaining the chemical and electronic passivation provided by complete termination of surface atoms with Si-C bonds. Such studies of mixed monolayers demonstrate the potential use of a wet-chemical surface modification scheme that combines both chemical and electronic passivation.

摘要

表面的化学、电子和结构性质受到表面化学末端的影响。硅的两步卤化/烷基化提供了一种可扩展的湿化学方法,可将分子接枝到硅表面。与其他通常研究的表面改性湿化学方法(例如金属上的自组装单层或硅上的硅氢化反应)不同,两步法可以将小的烷基链,甚至甲基,高表面覆盖率和均一地接枝到硅表面。与氢终止的硅(111)相比,甲基终止的硅(111)表面为研究连接覆盖层和表面的第一表面键的影响提供了独特的机会。本说明描述了对甲基终止的硅(111)的研究,该研究表明,H-Si(111)和 CH3-Si(111)表面在结构上几乎相同,但赋予了所得 Si 表面明显不同的化学和电子性质。通过两步卤化/甲基化过程形成的甲基终止的硅(111)的结构已通过各种光谱方法进行了研究。共价 Si-C 键垂直于表面取向,甲基基团直接位于表面 Si 原子的顶部。多种光谱方法表明,甲基基团在保持原始 H-Si(111)表面的原子平坦、梯形结构的同时,基本上完全覆盖了表面原子。因此,除了用 Si-C 键代替 Si-H 键之外,H-Si(111)和 CH3-Si(111)表面具有基本相同的结构。尽管它们的结构相似,但氢和甲基终止表现出明显不同的化学钝化。具体而言,CH3-Si(111)在空气中和光电阳极电流流动下的水溶液电解质中表现出比 H-Si(111)更高的抗氧化性。两种表面在真空中均表现出相似的热稳定性,并且 Si-H 和 Si-C 键强度预计非常相似,因此结果表明甲基终止为 Si 表面的氧化提供了更大的动力学障碍。硅(111)的氢终止为表面态提供了几乎完美的电子钝化(即,每 4000 万个表面原子中少于 1 个电子缺陷),但这种电子钝化在空气或电化学条件下会迅速降解。相比之下,甲基终止提供了出色的电子钝化,可抵抗氧化引起的降解。此外,烷基化通过创建表面偶极子来修饰表面电子结构,从而有效地改变 Si 表面的电子亲合性,从而促进 Si/金属或 Si/电解质结处电荷转移动力学的修饰。本说明还简要描述了最近对通过硅的卤化/烷基化形成的混合单层的研究。混合单层允许附着更大的基团,从而使表面上的二次化学(例如,分子催化剂的附着或原子层沉积的种子)与剩余未反应的表面位点的甲基化相结合。因此,可以在保持表面原子与 Si-C 键完全终止提供的化学和电子钝化的同时启用二次化学。这种混合单层的研究表明,一种结合化学和电子钝化的湿化学表面改性方案具有潜在的用途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验