Hornburg Daniel, Drepper Carsten, Butter Falk, Meissner Felix, Sendtner Michael, Mann Matthias
From the ‡Max Planck Institute of Biochemistry, Martinsried, 82152, Germany;
§Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, 97080, Wuerzburg, 97078 Germany; ¶Institute for Clinical Neurobiology, Wuerzburg, Germany;
Mol Cell Proteomics. 2014 Dec;13(12):3410-20. doi: 10.1074/mcp.M113.037291. Epub 2014 Sep 5.
The fatal neurodegenerative disorders amyotrophic lateral sclerosis and spinal muscular atrophy are, respectively, the most common motoneuron disease and genetic cause of infant death. Various in vitro model systems have been established to investigate motoneuron disease mechanisms, in particular immortalized cell lines and primary neurons. Using quantitative mass-spectrometry-based proteomics, we compared the proteomes of primary motoneurons to motoneuron-like cell lines NSC-34 and N2a, as well as to non-neuronal control cells, at a depth of 10,000 proteins. We used this resource to evaluate the suitability of murine in vitro model systems for cell biological and biochemical analysis of motoneuron disease mechanisms. Individual protein and pathway analysis indicated substantial differences between motoneuron-like cell lines and primary motoneurons, especially for proteins involved in differentiation, cytoskeleton, and receptor signaling, whereas common metabolic pathways were more similar. The proteins associated with amyotrophic lateral sclerosis also showed distinct differences between cell lines and primary motoneurons, providing a molecular basis for understanding fundamental alterations between cell lines and neurons with respect to neuronal pathways with relevance for disease mechanisms. Our study provides a proteomics resource for motoneuron research and presents a paradigm of how mass-spectrometry-based proteomics can be used to evaluate disease model systems.
致命的神经退行性疾病肌萎缩侧索硬化症和脊髓性肌萎缩症分别是最常见的运动神经元疾病和婴儿死亡的遗传原因。已建立了各种体外模型系统来研究运动神经元疾病机制,特别是永生化细胞系和原代神经元。我们使用基于定量质谱的蛋白质组学,将原代运动神经元的蛋白质组与运动神经元样细胞系NSC-34和N2a以及非神经元对照细胞的蛋白质组进行了比较,深度达10000种蛋白质。我们利用这一资源评估了小鼠体外模型系统对运动神经元疾病机制进行细胞生物学和生化分析的适用性。个体蛋白质和通路分析表明,运动神经元样细胞系与原代运动神经元之间存在显著差异,特别是在参与分化、细胞骨架和受体信号传导的蛋白质方面,而常见的代谢途径则更为相似。与肌萎缩侧索硬化症相关的蛋白质在细胞系和原代运动神经元之间也表现出明显差异,为理解细胞系和神经元在与疾病机制相关的神经元通路方面的基本改变提供了分子基础。我们的研究为运动神经元研究提供了一种蛋白质组学资源,并展示了基于质谱的蛋白质组学如何用于评估疾病模型系统的范例。