Clausen Johannes D, Holdensen Anne Nyholm, Andersen Jens Peter
From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark, and the Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark.
From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark, and
J Biol Chem. 2014 Oct 17;289(42):29123-34. doi: 10.1074/jbc.M114.571687. Epub 2014 Sep 5.
ATP has dual roles in the reaction cycle of sarcoplasmic reticulum Ca(2+)-ATPase. Upon binding to the Ca2E1 state, ATP phosphorylates the enzyme, and by binding to other conformational states in a non-phosphorylating modulatory mode ATP stimulates the dephosphorylation and other partial reaction steps of the cycle, thereby ensuring a high rate of Ca(2+) transport under physiological conditions. The present study elucidates the mechanism underlying the modulatory effect on dephosphorylation. In the intermediate states of dephosphorylation the A-domain residues Ser(186) and Asp(203) interact with Glu(439) (N-domain) and Arg(678) (P-domain), respectively. Single mutations to these residues abolish the stimulation of dephosphorylation by ATP. The double mutation swapping Asp(203) and Arg(678) rescues ATP stimulation, whereas this is not the case for the double mutation swapping Ser(186) and Glu(439). By taking advantage of the ability of wild type and mutant Ca(2+)-ATPases to form stable complexes with aluminum fluoride (E2·AlF) and beryllium fluoride (E2·BeF) as analogs of the E2·P phosphoryl transition state and E2P ground state, respectively, of the dephosphorylation reaction, the mutational effects on ATP binding to these intermediates are demonstrated. In the wild type Ca(2+)-ATPase, the ATP affinity of the E2·P phosphoryl transition state is higher than that of the E2P ground state, thus explaining the stimulation of dephosphorylation by nucleotide-induced transition state stabilization. We find that the Asp(203)-Arg(678) and Ser(186)-Glu(439) interdomain bonds are critical, because they tighten the interaction with ATP in the E2·P phosphoryl transition state. Moreover, ATP binding and the Ser(186)-Glu(439) bond are mutually exclusive in the E2P ground state.
ATP在肌浆网Ca(2+)-ATP酶的反应循环中具有双重作用。与Ca2E1状态结合后,ATP使该酶磷酸化,并且通过以非磷酸化调节模式与其他构象状态结合,ATP刺激循环中的去磷酸化及其他部分反应步骤,从而确保在生理条件下Ca(2+)的高转运速率。本研究阐明了对去磷酸化调节作用的潜在机制。在去磷酸化的中间状态,A结构域残基Ser(186)和Asp(203)分别与Glu(439)(N结构域)和Arg(678)(P结构域)相互作用。这些残基的单突变消除了ATP对去磷酸化的刺激作用。交换Asp(203)和Arg(678)的双突变挽救了ATP刺激作用,而交换Ser(186)和Glu(439)的双突变则不然。利用野生型和突变型Ca(2+)-ATP酶分别与氟化铝(E2·AlF)和氟化铍(E2·BeF)形成稳定复合物的能力,它们分别是去磷酸化反应中E2·P磷酰基过渡态和E2P基态的类似物,证明了突变对ATP与这些中间体结合的影响。在野生型Ca(2+)-ATP酶中,E2·P磷酰基过渡态的ATP亲和力高于E2P基态,从而解释了核苷酸诱导的过渡态稳定对去磷酸化的刺激作用。我们发现Asp(203)-Arg(678)和Ser(186)-Glu(439)结构域间键至关重要,因为它们加强了E2·P磷酰基过渡态中与ATP的相互作用。此外,在E2P基态中,ATP结合与Ser(186)-Glu(439)键相互排斥。