Suppr超能文献

影响心力衰竭患者死亡率和/或心力衰竭住院预测模型预测能力的因素。

Factors influencing the predictive power of models for predicting mortality and/or heart failure hospitalization in patients with heart failure.

机构信息

Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.

Department of Cardiology, University of Groningen, University Medical Center, Groningen, the Netherlands.

出版信息

JACC Heart Fail. 2014 Oct;2(5):429-36. doi: 10.1016/j.jchf.2014.04.006. Epub 2014 Sep 3.

Abstract

The present paper systematically reviews and compares existing prediction models in order to establish the strongest variables, models, and model characteristics in patients with heart failure predicting outcome. To improve decision making accurately predicting mortality and heart-failure hospitalization in patients with heart failure can be important for selecting patients with a poorer prognosis or nonresponders to current therapy, to improve decision making. MEDLINE/PubMed was searched for papers dealing with heart failure prediction models. To identify similar models on the basis of their variables hierarchical cluster analysis was performed. Meta-analysis was used to estimate the mean predictive value of the variables and models; meta-regression was used to find characteristics that explain variation in discriminating values between models. We identified 117 models in 55 papers. These models used 249 different variables. The strongest predictors were blood urea nitrogen and sodium. Four subgroups of models were identified. Mortality was most accurately predicted by prospective registry-type studies using a large number of clinical predictor variables. Mean C-statistic of all models was 0.66 ± 0.0005, with 0.71 ± 0.001, 0.68 ± 0.001 and 0.63 ± 0.001 for models predicting mortality, heart failure hospitalization, or both, respectively. There was no significant difference in discriminating value of models between patients with chronic and acute heart failure. Prediction of mortality and in particular heart failure hospitalization in patients with heart failure remains only moderately successful. The strongest predictors were blood urea nitrogen and sodium. The highest C-statistic values were achieved in a clinical setting, predicting short-term mortality with the use of models derived from prospective cohort/registry studies with a large number of predictor variables.

摘要

本研究系统地回顾和比较了现有的预测模型,旨在确定心力衰竭患者预后预测中最强的变量、模型和模型特征。准确预测死亡率和心力衰竭住院率可以改善决策,对于选择预后较差或对当前治疗无反应的患者,改善决策很重要。检索了 MEDLINE/PubMed 中涉及心力衰竭预测模型的文献。为了根据其变量进行相似模型的识别,进行了层次聚类分析。使用荟萃分析估计变量和模型的平均预测值;使用荟萃回归找到解释模型间判别值差异的特征。我们在 55 篇论文中确定了 117 个模型。这些模型使用了 249 个不同的变量。最强的预测因子是血尿素氮和钠。确定了 4 个模型亚组。使用大量临床预测变量的前瞻性登记研究最能准确预测死亡率。所有模型的平均 C 统计量为 0.66 ± 0.0005,分别为预测死亡率、心力衰竭住院或两者的模型的 0.71 ± 0.001、0.68 ± 0.001 和 0.63 ± 0.001。心力衰竭患者慢性和急性心力衰竭之间模型判别值无显著差异。心力衰竭患者死亡率和特别是心力衰竭住院的预测仍然只是中等成功。最强的预测因子是血尿素氮和钠。在临床环境中,使用源自前瞻性队列/登记研究的模型,使用大量预测变量,可实现最高的 C 统计量值,预测短期死亡率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验