Pocock Stuart J, Wang Duolao, Pfeffer Marc A, Yusuf Salim, McMurray John J V, Swedberg Karl B, Ostergren Jan, Michelson Eric L, Pieper Karen S, Granger Christopher B
Medical Statistics Unit, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
Eur Heart J. 2006 Jan;27(1):65-75. doi: 10.1093/eurheartj/ehi555. Epub 2005 Oct 11.
We aimed to develop prognostic models for patients with chronic heart failure (CHF).
We evaluated data from 7599 patients in the CHARM programme with CHF with and without left ventricular systolic dysfunction. Multi-variable Cox regression models were developed using baseline candidate variables to predict all-cause mortality (n=1831 deaths) and the composite of cardiovascular (CV) death and heart failure (HF) hospitalization (n=2460 patients with events). Final models included 21 predictor variables for CV death/HF hospitalization and for death. The three most powerful predictors were older age (beginning >60 years), diabetes, and lower left ventricular ejection fraction (EF) (beginning <45%). Other independent predictors that increased risk included higher NYHA class, cardiomegaly, prior HF hospitalization, male sex, lower body mass index, and lower diastolic blood pressure. The model accurately stratified actual 2-year mortality from 2.5 to 44% for the lowest to highest deciles of predicted risk.
In a large contemporary CHF population, including patients with preserved and decreased left ventricular systolic function, routine clinical variables can discriminate risk regardless of EF. Diabetes was found to be a surprisingly strong independent predictor. These models can stratify risk and help define how patient characteristics relate to clinical course.
我们旨在为慢性心力衰竭(CHF)患者开发预后模型。
我们评估了CHARM项目中7599例CHF患者的数据,这些患者伴有或不伴有左心室收缩功能障碍。使用基线候选变量建立多变量Cox回归模型,以预测全因死亡率(n = 1831例死亡)以及心血管(CV)死亡和心力衰竭(HF)住院的复合终点(n = 2460例发生事件的患者)。最终模型包括用于CV死亡/HF住院和死亡的21个预测变量。三个最有力的预测因素是年龄较大(开始> 60岁)、糖尿病和较低的左心室射血分数(EF)(开始<45%)。其他增加风险的独立预测因素包括较高的纽约心脏协会(NYHA)分级、心脏扩大、既往HF住院史、男性、较低的体重指数和较低的舒张压。该模型根据预测风险的最低到最高十分位数,准确地将实际2年死亡率分层为2.5%至44%。
在一个包括左心室收缩功能保留和降低的患者的大型当代CHF人群中,常规临床变量可以区分风险,而不考虑EF。糖尿病被发现是一个出人意料的强大独立预测因素。这些模型可以对风险进行分层,并有助于确定患者特征与临床病程之间的关系。