Suppr超能文献

碳纳米孔中离子液体冻融过程的电化学原位研究。

An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores.

作者信息

Weingarth Daniel, Drumm Robert, Foelske-Schmitz Annette, Kötz Rüdiger, Presser Volker

机构信息

INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.

出版信息

Phys Chem Chem Phys. 2014 Oct 21;16(39):21219-24. doi: 10.1039/c4cp02727b. Epub 2014 Sep 9.

Abstract

Room temperature ionic liquids (RTILs) are an emerging class of electrolytes enabling high cell voltages and, in return, high energy density of advanced supercapacitors. Yet, the low temperature behavior, including freezing and thawing, is little understood when ions are confined in the narrow space of nanopores. This study shows that RTILs may show a tremendously different thermal behavior when comparing bulk with nanoconfined properties as a result of the increased surface energy of carbon pore walls. In particular, a continuous increase in viscosity is accompanied by slowed-down charge-discharge kinetics as seen with in situ electrochemical characterization. Freezing reversibly collapses the energy storage ability and thawing fully restores the initial energy density of the material. For the first time, a different thermal behavior in positively and negatively polarized electrodes is demonstrated. This leads to different freezing and melting points in the two electrodes. Compared to bulk, RTILs in the confinement of electrically charged nanopores show a high affinity for supercooling; that is, the electrode may freeze during heating.

摘要

室温离子液体(RTILs)是一类新兴的电解质,可实现高电池电压,进而实现先进超级电容器的高能量密度。然而,当离子被限制在纳米孔的狭窄空间中时,包括冷冻和解冻在内的低温行为却鲜为人知。这项研究表明,由于碳孔壁表面能的增加,与本体性质相比,RTILs在纳米受限性质方面可能表现出截然不同的热行为。特别是,如原位电化学表征所示,粘度的持续增加伴随着充放电动力学的减慢。冷冻会可逆地破坏储能能力,解冻则能完全恢复材料的初始能量密度。首次证明了正负极化电极中存在不同的热行为。这导致两个电极具有不同的凝固点和熔点。与本体相比,带电纳米孔限制下的RTILs表现出对过冷的高亲和力;也就是说,电极可能在加热过程中冻结。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验