Suppr超能文献

在华中科技大学采用摆动时间法进行G测量。

G measurements with time-of-swing method at HUST.

作者信息

Li Qing, Liu Jian-Ping, Zhao Hui-Hui, Yang Shan-Qing, Tu Liang-Cheng, Liu Qi, Shao Cheng-Gang, Hu Zhong-Kun, Milyukov Vadim, Luo Jun

机构信息

MOE Key Laboratory of Fundamental Physical Quantities Measurements, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China.

Moscow State University, Sternberg Astronomical Institute, Moscow 119992, Russia.

出版信息

Philos Trans A Math Phys Eng Sci. 2014 Oct 13;372(2026). doi: 10.1098/rsta.2014.0141. Epub 2014 Sep 8.

Abstract

We review the G measurements with time-of-swing method at HUST. Two independent experiments have been completed and an improved experiment is in progress. The first G value was determined as 6.6699(7)×10 m kg s with a relative standard uncertainty (u) of 105 ppm by using a long period torsion pendulum and two cylindrical source masses. Later, this result was corrected to be 6.6723(9)×10 m kg s with u=130 ppm after considering the density distribution of the cylinders and the air buoyancy, which was 360 ppm larger than the previous value. In 2009, a new experiment by using a simple block pendulum and spherical source masses with more homogeneous density was carried out. A series of improvements were performed, and the G value was determined to be 6.67349(18)×10 m kg s with u=26 ppm. To reduce the anelasticity of the torsion fibre, fused silica fibres with Q's of approximately 5×10 are used to measure G in the ongoing experiment. These fibres are coated with thin layers of germanium and bismuth in turn to reduce the electrostatic effect. Some other improvements include the gravity compensation, reduction of the coating layer effect, etc. The prospective uncertainty of the next G value is 20 ppm or lower.

摘要

我们回顾了华中科技大学采用摆动时间法进行的引力常量(G)测量。已完成两项独立实验,一项改进实验正在进行中。首次使用长周期扭秤和两个圆柱形源质量体测得的G值为6.6699(7)×10⁻¹¹ m³ kg⁻¹ s⁻²,相对标准不确定度(u)为105 ppm。之后,在考虑圆柱体密度分布和空气浮力后,该结果修正为6.6723(9)×10⁻¹¹ m³ kg⁻¹ s⁻²,u = 130 ppm,比之前的值大360 ppm。2009年,开展了一项新实验,使用密度更均匀的简单块体摆和球形源质量体。进行了一系列改进,测得G值为6.67349(18)×10⁻¹¹ m³ kg⁻¹ s⁻²,u = 26 ppm。为降低扭丝的滞弹性,在正在进行的实验中使用品质因数(Q)约为5×10⁶的熔融石英纤维来测量G。这些纤维依次涂覆锗和铋的薄层以减少静电效应。其他一些改进包括重力补偿、减少涂层效应等。下一个G值的预期不确定度为20 ppm或更低。

相似文献

1
G measurements with time-of-swing method at HUST.
Philos Trans A Math Phys Eng Sci. 2014 Oct 13;372(2026). doi: 10.1098/rsta.2014.0141. Epub 2014 Sep 8.
2
A measurement of G with a cryogenic torsion pendulum.
Philos Trans A Math Phys Eng Sci. 2014 Oct 13;372(2026). doi: 10.1098/rsta.2014.0025. Epub 2014 Sep 8.
3
Determination of the Newtonian gravitational constant G with time-of-swing method.
Phys Rev Lett. 2009 Jun 19;102(24):240801. doi: 10.1103/PhysRevLett.102.240801. Epub 2009 Jun 16.
4
Preliminary determination of Newtonian gravitational constant with angular acceleration feedback method.
Philos Trans A Math Phys Eng Sci. 2014 Oct 13;372(2026). doi: 10.1098/rsta.2014.0031. Epub 2014 Sep 8.
5
Improved determination of G using two methods.
Phys Rev Lett. 2013 Sep 6;111(10):101102. doi: 10.1103/PhysRevLett.111.101102. Epub 2013 Sep 5.
6
Simple pendulum determination of the gravitational constant.
Phys Rev Lett. 2010 Sep 10;105(11):110801. doi: 10.1103/PhysRevLett.105.110801. Epub 2010 Sep 7.
7
Influence of temperature on period of torsion pendulum with a high-Q fused silica fiber.
Rev Sci Instrum. 2015 Sep;86(9):094501. doi: 10.1063/1.4930124.
8
Precision measurement of the Newtonian gravitational constant using cold atoms.
Nature. 2014 Jun 26;510(7506):518-21. doi: 10.1038/nature13433. Epub 2014 Jun 18.
9
Constraining the Symmetron Model with the HUST-2020 Torsion Pendulum Experiment.
Phys Rev Lett. 2022 Sep 30;129(14):141101. doi: 10.1103/PhysRevLett.129.141101.
10
Precision measurement of the Newtonian gravitational constant.
Natl Sci Rev. 2020 Jul 22;7(12):1803-1817. doi: 10.1093/nsr/nwaa165. eCollection 2020 Dec.

引用本文的文献

1
Precision measurement of the Newtonian gravitational constant.
Natl Sci Rev. 2020 Jul 22;7(12):1803-1817. doi: 10.1093/nsr/nwaa165. eCollection 2020 Dec.

本文引用的文献

1
CODATA recommended values of the fundamental physical constants: 2018.
Rev Mod Phys. 2021 Apr-Jun;93(2). doi: 10.1103/RevModPhys.93.025010. Epub 2021 Jun 30.
2
Improved determination of G using two methods.
Phys Rev Lett. 2013 Sep 6;111(10):101102. doi: 10.1103/PhysRevLett.111.101102. Epub 2013 Sep 5.
3
Simple pendulum determination of the gravitational constant.
Phys Rev Lett. 2010 Sep 10;105(11):110801. doi: 10.1103/PhysRevLett.105.110801. Epub 2010 Sep 7.
4
Determination of the Newtonian gravitational constant G with time-of-swing method.
Phys Rev Lett. 2009 Jun 19;102(24):240801. doi: 10.1103/PhysRevLett.102.240801. Epub 2009 Jun 16.
5
New measurements of G using the measurement standards laboratory torsion balance.
Phys Rev Lett. 2003 Nov 14;91(20):201101. doi: 10.1103/PhysRevLett.91.201101. Epub 2003 Nov 13.
6
A new determination of G using two methods.
Phys Rev Lett. 2001 Sep 10;87(11):111101. doi: 10.1103/PhysRevLett.87.111101. Epub 2001 Aug 27.
7
Measurement of Newton's constant using a torsion balance with angular acceleration feedback.
Phys Rev Lett. 2000 Oct 2;85(14):2869-72. doi: 10.1103/PhysRevLett.85.2869.
8
Does the time-of-swing method give a correct value of the newtonian gravitational constant?
Phys Rev Lett. 1995 Oct 9;75(15):2796-2798. doi: 10.1103/PhysRevLett.75.2796.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验