Suppr超能文献

基于模糊集斜率和粒子群优化技术的加权模糊插值推理。

Weighted Fuzzy Interpolative Reasoning Based on the Slopes of Fuzzy Sets and Particle Swarm Optimization Techniques.

出版信息

IEEE Trans Cybern. 2015 Jul;45(7):1250-61. doi: 10.1109/TCYB.2014.2347956. Epub 2014 Sep 5.

Abstract

In this paper, we propose a new weighted fuzzy interpolative reasoning method for sparse fuzzy rule-based systems based on the slopes of fuzzy sets. We also propose a particle swarm optimization (PSO)-based weights-learning algorithm to automatically learn the optimal weights of the antecedent variables of fuzzy rules for weighted fuzzy interpolative reasoning. We apply the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm to deal with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems. The experimental results show that the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm outperforms the existing methods for dealing with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems.

摘要

在本文中,我们提出了一种基于模糊集斜率的新的稀疏模糊规则系统的加权模糊插值推理方法。我们还提出了一种基于粒子群优化(PSO)的权重学习算法,用于自动学习模糊规则前件变量的最优权重,以进行加权模糊插值推理。我们应用所提出的基于 PSO 的权重学习算法的加权模糊插值推理方法来处理计算机活动预测问题、多元回归问题和时间序列预测问题。实验结果表明,所提出的基于 PSO 的权重学习算法的加权模糊插值推理方法在处理计算机活动预测问题、多元回归问题和时间序列预测问题方面优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验