IEEE Trans Cybern. 2015 Jul;45(7):1250-61. doi: 10.1109/TCYB.2014.2347956. Epub 2014 Sep 5.
In this paper, we propose a new weighted fuzzy interpolative reasoning method for sparse fuzzy rule-based systems based on the slopes of fuzzy sets. We also propose a particle swarm optimization (PSO)-based weights-learning algorithm to automatically learn the optimal weights of the antecedent variables of fuzzy rules for weighted fuzzy interpolative reasoning. We apply the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm to deal with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems. The experimental results show that the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm outperforms the existing methods for dealing with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems.
在本文中,我们提出了一种基于模糊集斜率的新的稀疏模糊规则系统的加权模糊插值推理方法。我们还提出了一种基于粒子群优化(PSO)的权重学习算法,用于自动学习模糊规则前件变量的最优权重,以进行加权模糊插值推理。我们应用所提出的基于 PSO 的权重学习算法的加权模糊插值推理方法来处理计算机活动预测问题、多元回归问题和时间序列预测问题。实验结果表明,所提出的基于 PSO 的权重学习算法的加权模糊插值推理方法在处理计算机活动预测问题、多元回归问题和时间序列预测问题方面优于现有方法。