Suppr超能文献

结合引力搜索算法、粒子群优化和模糊规则来提高前馈神经网络的分类性能。

Combining a gravitational search algorithm, particle swarm optimization, and fuzzy rules to improve the classification performance of a feed-forward neural network.

机构信息

Department of Industrial Engineering & Management, National Chin-Yi University of Technology, Taichung, Taiwan.

Department of Industrial Engineering & Management, National Chin-Yi University of Technology, Taichung, Taiwan.

出版信息

Comput Methods Programs Biomed. 2019 Oct;180:105016. doi: 10.1016/j.cmpb.2019.105016. Epub 2019 Aug 8.

Abstract

BACKGROUND AND OBJECTIVE

A feed-forward neural network (FNN) is a type of artificial neural network that has been widely used in medical diagnosis, data mining, stock market analysis, and other fields. Many studies have used FNN to develop medical decision-making systems to assist doctors in clinical diagnosis. The aim of the learning process in FNN is to find the best combination of connection weights and biases to achieve the minimum error. However, in many cases, FNNs converge to the local optimum but not the global optimum. Using open disease datasets, the purpose of this study was to optimize the connection weights and biases of the FNN to minimize the error and improve the accuracy of disease diagnosis.

METHOD

In this study, the chronic kidney disease (CKD) and mesothelioma (MES) disease datasets from the University of California Irvine (UCI) machine learning repository were used as research objects. This study applied the FNN to learn the features of each datum and used particle swarm optimization (PSO) and a gravitational search algorithm (GSA) to optimize the weights and biases of the FNN classifiers based on the algorithms inspired by the observation of natural phenomena. Moreover, fuzzy rules were used to optimize the parameters of the GSA to improve the performance of the algorithm in the classifier.

RESULTS

When applied to the CKD dataset, the accuracies of PSO and GSA were 99%. By using fuzzy rules to optimize the GSA parameter, the accuracy of fuzzy-GSA was 99.25%. The accuracies of the combined algorithms PSO-GSA and fuzzy-PSO-GSA reached 100%. In the MES disease dataset, all methods exhibited good performance with 100% accuracy.

CONCLUSIONS

This study used PSO, GSA, fuzzy-GSA, PSO-GSA, and fuzzy-PSO-GSA on CKD and MES disease datasets to identify the disease, and the performance of different algorithms was explored. Compared with other methods in the literature, our proposed method achieved higher accuracy.

摘要

背景与目的

前馈神经网络(FNN)是一种人工神经网络,已广泛应用于医学诊断、数据挖掘、股票市场分析等领域。许多研究使用 FNN 开发医学决策系统,以协助医生进行临床诊断。FNN 的学习过程旨在找到连接权重和偏差的最佳组合,以达到最小的误差。然而,在许多情况下,FNN 会收敛到局部最优而不是全局最优。本研究使用开源疾病数据集,旨在优化 FNN 的连接权重和偏差,以最小化误差并提高疾病诊断的准确性。

方法

本研究使用加利福尼亚大学欧文分校(UCI)机器学习存储库中的慢性肾脏病(CKD)和间皮瘤(MES)疾病数据集作为研究对象。本研究将 FNN 应用于学习每个数据点的特征,并使用粒子群优化(PSO)和引力搜索算法(GSA)根据受自然现象观测启发的算法,优化 FNN 分类器的权重和偏差。此外,使用模糊规则优化 GSA 的参数,以提高算法在分类器中的性能。

结果

当应用于 CKD 数据集时,PSO 和 GSA 的准确率均为 99%。通过使用模糊规则优化 GSA 参数,模糊-GSA 的准确率为 99.25%。组合算法 PSO-GSA 和模糊-PSO-GSA 的准确率达到 100%。在 MES 疾病数据集中,所有方法的准确率均为 100%。

结论

本研究使用 PSO、GSA、模糊-GSA、PSO-GSA 和模糊-PSO-GSA 对 CKD 和 MES 疾病数据集进行疾病识别,并探讨了不同算法的性能。与文献中的其他方法相比,我们提出的方法具有更高的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验