Hong Bonnie, Fisher Tracey L, Sult Theresa S, Maxwell Carl A, Mickelson James A, Kishino Hirohisa, Locke Mary E H
Pioneer Hi-Bred International, Inc., 2450 S.E. Oak Tree Court, Ankeny, Iowa 50021, United States.
J Agric Food Chem. 2014 Oct 8;62(40):9916-26. doi: 10.1021/jf502158q. Epub 2014 Sep 29.
Compositional analysis is a requisite component of the substantial equivalence framework utilized to assess genetically modified (GM) crop safety. Statistical differences in composition data between GM and non-GM crops require a context in which to determine biological relevance. This context is provided by surveying the natural variation of key nutrient and antinutrient levels within the crop population with a history of safe use. Data accumulated from various genotypes with a history of safe use cultivated in relevant commercial crop-growing environments over multiple seasons are discussed as the appropriate data representative of this natural variation. A model-based parametric tolerance interval approach, which accounts for the correlated and unbalanced data structure of cumulative historical data collected from multisite field studies conducted over multiple seasons, is presented. This paper promotes the application of this tolerance interval approach to generate reference ranges for evaluation of the biological relevance of statistical differences identified during substantial equivalence assessment of a GM crop.
成分分析是用于评估转基因作物安全性的实质等同性框架的必要组成部分。转基因作物与非转基因作物在成分数据上的统计差异需要一个背景来确定其生物学相关性。通过调查具有安全使用历史的作物群体中关键营养素和抗营养因子水平的自然变异来提供这一背景。在多个季节于相关商业作物种植环境中种植的具有安全使用历史的各种基因型积累的数据,被视为代表这种自然变异的适当数据。本文提出了一种基于模型的参数容忍区间方法,该方法考虑了从多个季节进行的多地点田间研究收集的累积历史数据的相关且不平衡的数据结构。本文提倡应用这种容忍区间方法来生成参考范围,以评估在转基因作物实质等同性评估过程中确定的统计差异的生物学相关性。