Andriamiadamanana Christian, Laberty-Robert Christel, Sougrati Moulay T, Casale Sandra, Davoisne Carine, Patra Snehangshu, Sauvage Frédéric
Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 7314, Université de Picardie Jules Verne , 33 rue Saint-Leu, 80039 Amiens Cedex, France.
Inorg Chem. 2014 Oct 6;53(19):10129-39. doi: 10.1021/ic501067p. Epub 2014 Sep 11.
Iron-doped nanocrystalline particles of anatase TiO2 (denoted x% Fe-TiO2, with x the nominal [Fe] atom % in solution) have been successfully synthesized at room temperature by a controlled two-step process. Hydrolysis of titanium isopropoxide is first achieved to precipitate Ti(OH)4 species. A fine control of the pH allows one to maintain (i) soluble iron species and (ii) a sluggish solubility of Ti(OH)4 to promote a dissolution and condensation of titanium clusters incorporating iron, leading to the precipitation of iron-doped anatase TiO2. The pH does then influence both the nature and crystallinity of the final phase. After 2 months of aging at pH = 2, well-dispersed nanocrystalline iron-doped TiO2 particles have been achieved, leading to 5-6 nm particle size and offering a high surface area of ca. 280 m(2)/g. This dissolution/recrystallization process allows the incorporation of a dopant concentration of up to 7.7 atom %; the successful incorporation of iron in the structure is demonstrated by X-ray diffraction, high-resolution transmission electron microscopy, and Mössbauer spectroscopy. This entails optical-band-gap narrowing from 3.05 to 2.30 eV. The pros and cons effects of doping on the electrochemical properties of TiO2 versus lithium are herein discussed. We reveal that doping improves the power rate capability of the electrode but, in turn, deserves the electrolyte stability, leading to early formation of SEI. Finally, we highlight a beneficial effect of low iron introduction into the anatase lattice for photocatalytic applications under standard AM1.5G visible-light illumination.
通过可控的两步法在室温下成功合成了铁掺杂的锐钛矿型二氧化钛纳米晶颗粒(表示为x% Fe-TiO₂,其中x为溶液中[Fe]原子的标称百分比)。首先使异丙醇钛水解以沉淀出Ti(OH)₄物种。对pH的精确控制使得能够维持:(i) 可溶性铁物种,以及 (ii) Ti(OH)₄的缓慢溶解度,以促进掺入铁的钛簇的溶解和缩合,从而导致铁掺杂的锐钛矿型TiO₂沉淀。然后pH确实会影响最终相的性质和结晶度。在pH = 2下老化2个月后,获得了分散良好的纳米晶铁掺杂TiO₂颗粒,粒径为5 - 6 nm,比表面积约为280 m²/g。这种溶解/重结晶过程允许掺入高达7.7原子%的掺杂剂浓度;通过X射线衍射、高分辨率透射电子显微镜和穆斯堡尔光谱证明了铁成功掺入结构中。这导致光学带隙从3.05 eV缩小到2.30 eV。本文讨论了掺杂对TiO₂与锂的电化学性能的利弊影响。我们发现掺杂提高了电极的功率倍率性能,但反过来,这需要电解质的稳定性,导致早期形成固体电解质界面(SEI)。最后,我们强调了在标准AM1.5G可见光照射下,向锐钛矿晶格中引入低含量铁对光催化应用的有益影响。