Sherr E, Macy E, Kimata H, Gilly M, Saxon A
Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90024.
J Immunol. 1989 Jan 15;142(2):481-9.
Our results support the hypothesis that binding the low affinity Fc epsilon R (Fc epsilon R-II, CD23) on IgE-secreting B cells, directly suppresses IgE production. IgE production from AF-10/U266 (a human IgE plasmacytoma) decreased upon incubation with anti-IgE mAb or IgE:anti-IgE immune complexes (IgE-IC). Synthesis was suppressed a maximum of 51% with 10 micrograms/ml of IgE-IC after a 24-h incubation. Spontaneous in vitro IgE synthesis from the B cells of highly atopic individuals was also inhibited in a similar fashion. This effect was isotype specific as IgA or IgG immune complexes did not alter IgE production from AF-10 nor did IgE-IC affect IgA or IgG synthesis from lymphoblastoid cell lines making IgG (GM1500 and RPMI 8866) or IgA (GM1056). U266/AF-10 cells displayed both membrane IgE (greater than 90%) and Fc epsilon R-II (23%). To evaluate the role of these membrane proteins in the observed suppression of IgE synthesis, we treated U266/AF-10 cells with IgE-IC that bound Fc epsilon R-II but could not bind membrane IgE, as the mAb used was directed against an idiotypic determinant on the myeloma IgE (PS) used to make the IgE-IC. Suppression was maximal (greater than 50%) with these complexes at 0.1 micrograms/ml and at a 1/1 ratio of mAb anti-IgE to human myeloma IgE. When IgE-IC were used that were constructed with heat denatured IgE or F(ab')2 fragments of IgE, suppression was abrogated indicating IgE-Fc epsilon R binding was required. Neither PS IgE nor mAb 5.1 (the components of IgE-IC) alone affected IgE synthesis. Furthermore, a mAb binding directly to CD23 suppressed IgE synthesis from AF-10 up to 60%. Using limiting dilution analysis, we determined that IgE production per AF-10 cell was constant (0.9 pg/cell/24 h), independent of cell density and cells incubated with IgE-IC were uniformly suppressed. To clarify the mechanism of IgE-IC-induced suppression on AF-10 cells, we assessed both the proliferative rate and cell cycle distribution upon incubation with IgE-IC. There was no correlation between IgE production and [3H]TdR incorporation by AF-10 cells incubated with IgE-IC or anti-CD23 mAb. The distribution of cells within the cell cycle was unaffected by these treatments, with 60% of the cells in G1. These results define a direct role for the Fc epsilon R-II on B cells in the regulation of ongoing IgE synthesis.
与分泌IgE的B细胞上的低亲和力FcεR(FcεR-II,CD23)结合,可直接抑制IgE的产生。用抗IgE单克隆抗体或IgE:抗IgE免疫复合物(IgE-IC)孵育后,AF-10/U266(一种人IgE浆细胞瘤)的IgE产生减少。孵育24小时后,10微克/毫升的IgE-IC可使合成抑制高达51%。特应性个体B细胞的体外自发IgE合成也以类似方式受到抑制。这种效应具有同种型特异性,因为IgA或IgG免疫复合物不会改变AF-10的IgE产生,IgE-IC也不会影响产生IgG(GM1500和RPMI 8866)或IgA(GM1056)的淋巴母细胞系的IgA或IgG合成。U266/AF-10细胞同时表达膜IgE(>90%)和FcεR-II(23%)。为了评估这些膜蛋白在观察到的IgE合成抑制中的作用,我们用与FcεR-II结合但不能结合膜IgE的IgE-IC处理U266/AF-10细胞,因为所用的单克隆抗体针对用于制备IgE-IC的骨髓瘤IgE(PS)上的独特型决定簇。这些复合物在0.1微克/毫升以及抗IgE单克隆抗体与人骨髓瘤IgE的比例为1/1时抑制作用最大(>50%)。当使用由热变性IgE或IgE的F(ab')2片段构建的IgE-IC时,抑制作用消除,表明需要IgE-FcεR结合。单独的PS IgE或单克隆抗体5.1(IgE-IC的成分)均不影响IgE合成。此外,直接结合CD23的单克隆抗体可将AF-10细胞的IgE合成抑制高达60%。使用有限稀释分析,我们确定每个AF-10细胞的IgE产生是恒定的(0.9皮克/细胞/24小时),与细胞密度无关,并且与IgE-IC孵育的细胞被均匀抑制。为了阐明IgE-IC诱导的对AF-10细胞的抑制机制,我们评估了与IgE-IC孵育后的增殖率和细胞周期分布。与IgE-IC或抗CD23单克隆抗体孵育的AF-10细胞中,IgE产生与[3H]TdR掺入之间没有相关性。这些处理不影响细胞周期内细胞的分布,60%的细胞处于G1期。这些结果确定了B细胞上的FcεR-II在调节正在进行的IgE合成中的直接作用。