Suppr超能文献

神经元型一氧化氮合酶缺失会抑制mdx小鼠的代偿性肌肉肥大,并加剧炎症反应以及离心收缩诱导的损伤。

Loss of nNOS inhibits compensatory muscle hypertrophy and exacerbates inflammation and eccentric contraction-induced damage in mdx mice.

作者信息

Froehner Stanley C, Reed Sarah M, Anderson Kendra N, Huang Paul L, Percival Justin M

机构信息

Department of Physiology and Biophysics, University of Washington Medical School, Seattle, WA, USA.

Cardiovascular Research Center and Harvard Stem Cell Institute, Massachusetts General Hospital, Boston, MA, USA and.

出版信息

Hum Mol Genet. 2015 Jan 15;24(2):492-505. doi: 10.1093/hmg/ddu469. Epub 2014 Sep 11.

Abstract

Approaches targeting nitric oxide (NO) signaling show promise as therapies for Duchenne and Becker muscular dystrophies. However, the mechanisms by which NO benefits dystrophin-deficient muscle remain unclear, but may involve nNOSβ, a newly discovered enzymatic source of NO in skeletal muscle. Here we investigate the impact of dystrophin deficiency on nNOSβ and use mdx mice engineered to lack nNOSμ and nNOSβ to discern how the loss of nNOS impacts dystrophic skeletal muscle pathology. In mdx muscle, nNOSβ was mislocalized and its association with the Golgi complex was reduced. nNOS depletion from mdx mice prevented compensatory skeletal muscle cell hypertrophy, decreased myofiber central nucleation and increased focal macrophage cell infiltration, indicating exacerbated dystrophic muscle damage. Reductions in muscle integrity in nNOS-null mdx mice were accompanied by decreases in specific force and increased susceptibility to eccentric contraction-induced muscle damage compared with mdx controls. Unexpectedly, muscle fatigue was unaffected by nNOS depletion, revealing a novel latent compensatory mechanism for the loss of nNOS in mdx mice. Together with previous studies, these data suggest that localization of both nNOSμ and nNOSβ is disrupted by dystrophin deficiency. They also indicate that nNOS has a more complex role as a modifier of dystrophic pathology and broader therapeutic potential than previously recognized. Importantly, these findings also suggest nNOSβ as a new drug target and provide a new conceptual framework for understanding nNOS signaling and the benefits of NO therapies in dystrophinopathies.

摘要

针对一氧化氮(NO)信号通路的治疗方法有望成为杜兴氏和贝克氏肌肉营养不良症的治疗手段。然而,NO对缺乏抗肌萎缩蛋白的肌肉有益的机制仍不清楚,但可能涉及nNOSβ,这是骨骼肌中一种新发现的NO酶源。在此,我们研究了抗肌萎缩蛋白缺乏对nNOSβ的影响,并使用经过基因工程改造而缺乏nNOSμ和nNOSβ的mdx小鼠,来探究nNOS的缺失如何影响营养不良性骨骼肌病理。在mdx小鼠的肌肉中,nNOSβ定位错误,且其与高尔基体复合物的结合减少。mdx小鼠体内nNOS的缺失阻止了骨骼肌细胞的代偿性肥大,减少了肌纤维中央核化,并增加了局部巨噬细胞浸润,表明营养不良性肌肉损伤加剧。与mdx对照相比,nNOS基因敲除的mdx小鼠肌肉完整性降低,同时比肌力下降,对离心收缩诱导的肌肉损伤的易感性增加。出乎意料的是,肌肉疲劳不受nNOS缺失的影响,这揭示了mdx小鼠中nNOS缺失的一种新的潜在代偿机制。与先前的研究一起,这些数据表明,抗肌萎缩蛋白缺乏会破坏nNOSμ和nNOSβ的定位。它们还表明,nNOS作为营养不良性病理的调节因子,其作用比以前认识到的更为复杂,具有更广泛的治疗潜力。重要的是,这些发现还表明nNOSβ是一个新的药物靶点,并为理解nNOS信号通路以及NO疗法在抗肌萎缩蛋白病中的益处提供了一个新的概念框架。

相似文献

2
A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice.
J Cell Biol. 2001 Oct 1;155(1):123-31. doi: 10.1083/jcb.200105110.
4
Xanthine oxidase is hyper-active in Duchenne muscular dystrophy.
Free Radic Biol Med. 2018 Dec;129:364-371. doi: 10.1016/j.freeradbiomed.2018.10.404. Epub 2018 Oct 10.
6
mdx muscle pathology is independent of nNOS perturbation.
Hum Mol Genet. 1998 May;7(5):823-9. doi: 10.1093/hmg/7.5.823.
7
Decreased myocardial nNOS, increased iNOS and abnormal ECGs in mouse models of Duchenne muscular dystrophy.
J Mol Cell Cardiol. 1999 Oct;31(10):1857-62. doi: 10.1006/jmcc.1999.1018.
8
Sarcolemmal targeting of nNOSμ improves contractile function of mdx muscle.
Hum Mol Genet. 2016 Jan 1;25(1):158-66. doi: 10.1093/hmg/ddv466. Epub 2015 Nov 24.
10
Truncated dystrophin ameliorates the dystrophic phenotype of mdx mice by reducing sarcolipin-mediated SERCA inhibition.
Biochem Biophys Res Commun. 2018 Oct 20;505(1):51-59. doi: 10.1016/j.bbrc.2018.09.039. Epub 2018 Sep 17.

引用本文的文献

5
Piezo1-mediated stellate cell activation causes pressure-induced pancreatic fibrosis in mice.
JCI Insight. 2022 Apr 22;7(8):e158288. doi: 10.1172/jci.insight.158288.
6
Lifespan Analysis of Dystrophic Fast-Twitch Muscle Morphology and Its Impact on Contractile Function.
Front Physiol. 2021 Dec 7;12:771499. doi: 10.3389/fphys.2021.771499. eCollection 2021.
8
Nitric Oxide and Mechano-Electrical Transduction in Cardiomyocytes.
Front Physiol. 2020 Dec 15;11:606740. doi: 10.3389/fphys.2020.606740. eCollection 2020.
10
Enhanced dimethylarginine degradation improves coronary flow reserve and exercise tolerance in Duchenne muscular dystrophy carrier mice.
Am J Physiol Heart Circ Physiol. 2020 Sep 1;319(3):H582-H603. doi: 10.1152/ajpheart.00333.2019. Epub 2020 Aug 7.

本文引用的文献

1
nNOS regulation of skeletal muscle fatigue and exercise performance.
Biophys Rev. 2011 Dec;3(4):209-217. doi: 10.1007/s12551-011-0060-9. Epub 2011 Nov 8.
2
Microtubule binding distinguishes dystrophin from utrophin.
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5723-8. doi: 10.1073/pnas.1323842111. Epub 2014 Mar 31.
3
Nitric oxide and muscle repair: multiple actions converging on therapeutic efficacy.
Eur J Pharmacol. 2014 May 5;730:181-5. doi: 10.1016/j.ejphar.2013.11.006. Epub 2013 Nov 20.
4
Nuclear recruitment of neuronal nitric-oxide synthase by α-syntrophin is crucial for the induction of mitochondrial biogenesis.
J Biol Chem. 2014 Jan 3;289(1):365-78. doi: 10.1074/jbc.M113.506733. Epub 2013 Nov 14.
6
Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy.
Sci Transl Med. 2012 Nov 28;4(162):162ra155. doi: 10.1126/scitranslmed.3004327.
7
Fatigue in muscular dystrophies.
Neuromuscul Disord. 2012 Dec;22 Suppl 3(3-3):S214-20. doi: 10.1016/j.nmd.2012.10.010.
8
Specificity in S-nitrosylation: a short-range mechanism for NO signaling?
Antioxid Redox Signal. 2013 Oct 10;19(11):1220-35. doi: 10.1089/ars.2012.5066. Epub 2013 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验