Suppr超能文献

基于混合投票机制的支持向量机卫星故障诊断

Satellite fault diagnosis using support vector machines based on a hybrid voting mechanism.

作者信息

Yin Hong, Yang Shuqiang, Zhu Xiaoqian, Jin Songchang, Wang Xiang

机构信息

College of Computer, National University of Defense Technology, Changsha 410073, China ; Xiangyang School for NCOs, Xiangyang 441118, China.

College of Computer, National University of Defense Technology, Changsha 410073, China.

出版信息

ScientificWorldJournal. 2014;2014:582042. doi: 10.1155/2014/582042. Epub 2014 Aug 12.

Abstract

The satellite fault diagnosis has an important role in enhancing the safety, reliability, and availability of the satellite system. However, the problem of enormous parameters and multiple faults makes a challenge to the satellite fault diagnosis. The interactions between parameters and misclassifications from multiple faults will increase the false alarm rate and the false negative rate. On the other hand, for each satellite fault, there is not enough fault data for training. To most of the classification algorithms, it will degrade the performance of model. In this paper, we proposed an improving SVM based on a hybrid voting mechanism (HVM-SVM) to deal with the problem of enormous parameters, multiple faults, and small samples. Many experimental results show that the accuracy of fault diagnosis using HVM-SVM is improved.

摘要

卫星故障诊断对于提高卫星系统的安全性、可靠性和可用性具有重要作用。然而,参数众多和多重故障的问题给卫星故障诊断带来了挑战。参数之间的相互作用以及多重故障导致的错误分类会增加误报率和漏报率。另一方面,对于每一个卫星故障,用于训练的故障数据都不足。对于大多数分类算法来说,这会降低模型的性能。在本文中,我们提出了一种基于混合投票机制的改进支持向量机(HVM-SVM)来处理参数众多、多重故障和小样本问题。许多实验结果表明,使用HVM-SVM进行故障诊断的准确率得到了提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9664/4146359/910468624084/TSWJ2014-582042.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验