Suppr超能文献

从病毒蛋白结构预测进化位点变异性:埋藏性、堆积、灵活性与设计

Predicting evolutionary site variability from structure in viral proteins: buriedness, packing, flexibility, and design.

作者信息

Shahmoradi Amir, Sydykova Dariya K, Spielman Stephanie J, Jackson Eleisha L, Dawson Eric T, Meyer Austin G, Wilke Claus O

机构信息

Department of Physics, The University of Texas at Austin, Austin, TX, 78712, USA.

出版信息

J Mol Evol. 2014 Oct;79(3-4):130-42. doi: 10.1007/s00239-014-9644-x. Epub 2014 Sep 13.

Abstract

Several recent works have shown that protein structure can predict site-specific evolutionary sequence variation. In particular, sites that are buried and/or have many contacts with other sites in a structure have been shown to evolve more slowly, on average, than surface sites with few contacts. Here, we present a comprehensive study of the extent to which numerous structural properties can predict sequence variation. The quantities we considered include buriedness (as measured by relative solvent accessibility), packing density (as measured by contact number), structural flexibility (as measured by B factors, root-mean-square fluctuations, and variation in dihedral angles), and variability in designed structures. We obtained structural flexibility measures both from molecular dynamics simulations performed on nine non-homologous viral protein structures and from variation in homologous variants of those proteins, where they were available. We obtained measures of variability in designed structures from flexible-backbone design in the Rosetta software. We found that most of the structural properties correlate with site variation in the majority of structures, though the correlations are generally weak (correlation coefficients of 0.1-0.4). Moreover, we found that buriedness and packing density were better predictors of evolutionary variation than structural flexibility. Finally, variability in designed structures was a weaker predictor of evolutionary variability than buriedness or packing density, but it was comparable in its predictive power to the best structural flexibility measures. We conclude that simple measures of buriedness and packing density are better predictors of evolutionary variation than the more complicated predictors obtained from dynamic simulations, ensembles of homologous structures, or computational protein design.

摘要

最近的几项研究表明,蛋白质结构能够预测位点特异性的进化序列变异。特别是,在一个结构中被掩埋和/或与其他位点有许多接触的位点,平均而言,其进化速度比接触少的表面位点要慢。在此,我们对众多结构特性能够预测序列变异的程度进行了全面研究。我们考虑的量包括掩埋程度(通过相对溶剂可及性测量)、堆积密度(通过接触数测量)、结构灵活性(通过B因子、均方根波动和二面角变化测量)以及设计结构中的变异性。我们从对九个非同源病毒蛋白结构进行的分子动力学模拟以及这些蛋白同源变体的变异中(若有可用数据)获得了结构灵活性测量值。我们从Rosetta软件中的柔性骨架设计获得了设计结构中的变异性测量值。我们发现,大多数结构特性与大多数结构中的位点变异相关,尽管相关性通常较弱(相关系数为0.1 - 0.4)。此外,我们发现掩埋程度和堆积密度比结构灵活性更能预测进化变异。最后,设计结构中的变异性比掩埋程度或堆积密度更难以预测进化变异性,但其预测能力与最佳的结构灵活性测量值相当。我们得出结论,与从动态模拟、同源结构集合或计算蛋白质设计中获得的更复杂的预测指标相比,掩埋程度和堆积密度的简单测量指标更能预测进化变异。

相似文献

1
Predicting evolutionary site variability from structure in viral proteins: buriedness, packing, flexibility, and design.
J Mol Evol. 2014 Oct;79(3-4):130-42. doi: 10.1007/s00239-014-9644-x. Epub 2014 Sep 13.
3
Dissecting the roles of local packing density and longer-range effects in protein sequence evolution.
Proteins. 2016 Jun;84(6):841-54. doi: 10.1002/prot.25034. Epub 2016 Apr 9.
6
Local packing density is the main structural determinant of the rate of protein sequence evolution at site level.
Biomed Res Int. 2014;2014:572409. doi: 10.1155/2014/572409. Epub 2014 Jul 9.
7
Amino-acid site variability among natural and designed proteins.
PeerJ. 2013 Nov 12;1:e211. doi: 10.7717/peerj.211. eCollection 2013.
8
Too packed to change: side-chain packing and site-specific substitution rates in protein evolution.
PeerJ. 2015 Apr 23;3:e911. doi: 10.7717/peerj.911. eCollection 2015.
10
How is structural divergence related to evolutionary information?
Mol Phylogenet Evol. 2018 Oct;127:859-866. doi: 10.1016/j.ympev.2018.06.033. Epub 2018 Jun 25.

引用本文的文献

1
2
Evolution of tunnels in α/β-hydrolase fold proteins-What can we learn from studying epoxide hydrolases?
PLoS Comput Biol. 2022 May 17;18(5):e1010119. doi: 10.1371/journal.pcbi.1010119. eCollection 2022 May.
3
Evolution of Amino Acid Propensities under Stability-Mediated Epistasis.
Mol Biol Evol. 2022 Mar 2;39(3). doi: 10.1093/molbev/msac030.
4
Hotspots for mutations in the SARS-CoV-2 spike glycoprotein: a correspondence analysis.
Sci Rep. 2021 Dec 8;11(1):23622. doi: 10.1038/s41598-021-01655-y.
5
Sequence-structure-function relationships in class I MHC: A local frustration perspective.
PLoS One. 2020 May 18;15(5):e0232849. doi: 10.1371/journal.pone.0232849. eCollection 2020.
6
Dynamics-function relationship in the catalytic domains of N-terminal acetyltransferases.
Comput Struct Biotechnol J. 2020 Mar 3;18:532-547. doi: 10.1016/j.csbj.2020.02.017. eCollection 2020.
7
Emerging Frontiers in the Study of Molecular Evolution.
J Mol Evol. 2020 Apr;88(3):211-226. doi: 10.1007/s00239-020-09932-6.
8
Beyond Thermodynamic Constraints: Evolutionary Sampling Generates Realistic Protein Sequence Variation.
Genetics. 2018 Apr;208(4):1387-1395. doi: 10.1534/genetics.118.300699. Epub 2018 Jan 30.
10

本文引用的文献

1
Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald.
J Chem Theory Comput. 2013 Sep 10;9(9):3878-88. doi: 10.1021/ct400314y. Epub 2013 Aug 20.
2
Local packing density is the main structural determinant of the rate of protein sequence evolution at site level.
Biomed Res Int. 2014;2014:572409. doi: 10.1155/2014/572409. Epub 2014 Jul 9.
4
A new formulation of protein evolutionary models that account for structural constraints.
Mol Biol Evol. 2014 Mar;31(3):736-49. doi: 10.1093/molbev/mst240. Epub 2013 Dec 3.
5
Maximum allowed solvent accessibilites of residues in proteins.
PLoS One. 2013 Nov 21;8(11):e80635. doi: 10.1371/journal.pone.0080635. eCollection 2013.
7
Amino-acid site variability among natural and designed proteins.
PeerJ. 2013 Nov 12;1:e211. doi: 10.7717/peerj.211. eCollection 2013.
8
Computational protein design quantifies structural constraints on amino acid covariation.
PLoS Comput Biol. 2013;9(11):e1003313. doi: 10.1371/journal.pcbi.1003313. Epub 2013 Nov 14.
10
Structural dynamics flexibility informs function and evolution at a proteome scale.
Evol Appl. 2013 Apr;6(3):423-33. doi: 10.1111/eva.12052. Epub 2013 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验