Nag Preetom, Teramoto Hiroshi, Li Chun-Biu, Terdik Joseph Z, Scherer Norbert F, Komatsuzaki Tamiki
Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
Molecule and Life Nonlinear Sciences Laboratory, Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0020, Japan.
J Chem Phys. 2014 Sep 14;141(10):104907. doi: 10.1063/1.4894866.
Quantifying the interactions in dense colloidal fluids requires a properly designed order parameter. We present a modified bond-orientational order parameter, ψ̄6, to avoid problems of the original definition of bond-orientational order parameter. The original bond-orientational order parameter can change discontinuously in time but our modified order parameter is free from the discontinuity and, thus, it is a suitable measure to quantify the dynamics of the bond-orientational ordering of the local surroundings. Here we analyze ψ̄6 in a dense driven monodisperse quasi-two-dimensional colloidal fluids where a single particle is optically trapped at the center. The perturbation by the trapped and driven particle alters the structure and dynamics of the neighboring particles. This perturbation disturbs the flow and causes spatial and temporal distortion of the bond-orientational configuration surrounding each particle. We investigate spatio-temporal behavior of ψ̄6 by a Wavelet transform that provides a time-frequency representation of the time series of ψ̄6. It is found that particles that have high power in frequencies corresponding to the inverse of the timescale of perturbation undergo distortions of their packing configurations that result in cage breaking and formation dynamics. To gain insight into the dynamic structure of cage breaking and formation of bond-orientational ordering, we compare the cage breaking and formation dynamics with the underlying dynamical structure identified by Lagrangian Coherent Structures (LCSs) estimated from the finite-time Lyapunov exponent (FTLE) field. The LCSs are moving separatrices that effectively divide the flow into distinct regions with different dynamical behavior. It is shown that the spatial distribution of the FTLE field and the power of particles in the wavelet transform have positive correlation, implying that LCSs provide a dynamic structure that dominates the dynamics of cage breaking and formation of the colloidal fluids.
量化稠密胶体流体中的相互作用需要一个经过适当设计的序参量。我们提出了一种修正的键取向序参量ψ̄6,以避免键取向序参量原始定义中存在的问题。原始的键取向序参量在时间上可能会不连续地变化,但我们修正后的序参量没有这种不连续性,因此,它是量化局部环境中键取向有序化动力学的合适量度。在这里,我们分析了一种稠密的受驱动单分散准二维胶体流体中的ψ̄6,其中单个粒子被光学捕获在中心位置。被捕获和驱动的粒子产生的扰动改变了相邻粒子的结构和动力学。这种扰动扰乱了流体流动,并导致每个粒子周围键取向构型的时空畸变。我们通过小波变换研究ψ̄6的时空行为,小波变换提供了ψ̄6时间序列的时频表示。研究发现,在与扰动时间尺度的倒数相对应的频率上具有高功率的粒子,其堆积构型会发生畸变,从而导致笼状结构的破坏和形成动力学。为了深入了解键取向有序化中笼状结构破坏和形成的动态结构,我们将笼状结构破坏和形成动力学与由有限时间李雅普诺夫指数(FTLE)场估计的拉格朗日相干结构(LCS)所识别的潜在动力学结构进行了比较。LCS是移动的分界线,有效地将流体流动划分为具有不同动力学行为的不同区域。结果表明,FTLE场的空间分布与小波变换中粒子的功率具有正相关性,这意味着LCS提供了一种主导胶体流体笼状结构破坏和形成动力学的动态结构。