Suppr超能文献

一种基于海绵状石墨烯的双压电晶片致动器,具有超大位移,用于仿生应用。

A spongy graphene based bimorph actuator with ultra-large displacement towards biomimetic application.

作者信息

Hu Ying, Lan Tian, Wu Guan, Zhu Zicai, Chen Wei

机构信息

i-Lab, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.

出版信息

Nanoscale. 2014 Nov 7;6(21):12703-9. doi: 10.1039/c4nr02768j.

Abstract

Bimorph actuators, consisting of two layers with asymmetric expansion and generating bending displacement, have been widely researched. Their actuation performances greatly rely on the difference of coefficients of thermal expansion (CTE) between the two material layers. Here, by introducing a spongy graphene (sG) paper with a large negative CTE as well as high electrical-to-thermal properties, an electromechanical sG/PDMS bimorph actuator is designed and fabricated, showing an ultra-large bending displacement output under low voltage stimulation (curvature of about 1.2 cm(-1) at 10 V for 3 s), a high displacement-to-length ratio (∼0.79), and vibration motion at AC voltage (up to 10 Hz), which is much larger and faster than that of the other electromechanical bimorph actuators. Based on the sG/PDMS bimorph serving as the "finger", a mechanical gripper is constructed to realize the fast manipulation of the objects under 0.1 Hz square wave voltage stimulation (0-8 V). The designed bimorph actuator coupled with ultra-large bending displacement, low driven voltage, and the ease of fabrication may open up substantial possibilities for the utilization of electromechanical actuators in practical biomimetic device applications.

摘要

双压电晶片致动器由两层具有不对称膨胀并产生弯曲位移的材料组成,已经得到了广泛研究。它们的驱动性能很大程度上依赖于两种材料层之间的热膨胀系数(CTE)差异。在此,通过引入一种具有大负CTE以及高电热性能的海绵状石墨烯(sG)纸,设计并制造了一种机电sG/PDMS双压电晶片致动器,其在低电压刺激下显示出超大的弯曲位移输出(在10 V下持续3 s时曲率约为1.2 cm⁻¹)、高位移与长度比(约0.79)以及在交流电压下的振动运动(高达10 Hz),这比其他机电双压电晶片致动器的运动要大得多且快得多。基于作为“手指”的sG/PDMS双压电晶片,构建了一个机械夹具,以在0.1 Hz方波电压刺激(0 - 8 V)下实现对物体的快速操作。所设计的双压电晶片致动器具有超大弯曲位移、低驱动电压以及易于制造的特点,这可能为机电致动器在实际仿生器件应用中的利用开辟大量可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验