Suppr超能文献

自相互作用链的电路拓扑结构:对折叠和展开动力学的影响。

Circuit topology of self-interacting chains: implications for folding and unfolding dynamics.

作者信息

Mugler Andrew, Tans Sander J, Mashaghi Alireza

机构信息

Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907, USA.

出版信息

Phys Chem Chem Phys. 2014 Nov 7;16(41):22537-44. doi: 10.1039/c4cp03402c.

Abstract

Understanding the relationship between molecular structure and folding is a central problem in disciplines ranging from biology to polymer physics and DNA origami. Topology can be a powerful tool to address this question. For a folded linear chain, the arrangement of intra-chain contacts is a topological property because rearranging the contacts requires discontinuous deformations. Conversely, the topology is preserved when continuously stretching the chain while maintaining the contact arrangement. Here we investigate how the folding and unfolding of linear chains with binary contacts is guided by the topology of contact arrangements. We formalize the topology by describing the relations between any two contacts in the structure, which for a linear chain can either be in parallel, in series, or crossing each other. We show that even when other determinants of folding rate such as contact order and size are kept constant, this 'circuit' topology determines folding kinetics. In particular, we find that the folding rate increases with the fractions of parallel and crossed relations. Moreover, we show how circuit topology constrains the conformational phase space explored during folding and unfolding: the number of forbidden unfolding transitions is found to increase with the fraction of parallel relations and to decrease with the fraction of series relations. Finally, we find that circuit topology influences whether distinct intermediate states are present, with crossed contacts being the key factor. The approach presented here can be more generally applied to questions on molecular dynamics, evolutionary biology, molecular engineering, and single-molecule biophysics.

摘要

理解分子结构与折叠之间的关系是从生物学、高分子物理学到DNA折纸术等众多学科的核心问题。拓扑学可以成为解决这一问题的有力工具。对于一条折叠的线性链,链内接触的排列是一种拓扑性质,因为重新排列这些接触需要不连续的变形。相反,在连续拉伸链并保持接触排列的同时,拓扑结构得以保留。在此,我们研究具有二元接触的线性链的折叠与展开是如何受接触排列的拓扑结构引导的。我们通过描述结构中任意两个接触之间的关系来形式化拓扑结构,对于线性链而言,这些关系可以是平行、串联或相互交叉。我们表明,即使折叠速率的其他决定因素(如接触顺序和大小)保持不变,这种“电路”拓扑结构也能决定折叠动力学。特别是,我们发现折叠速率随着平行和交叉关系的比例增加而提高。此外,我们展示了电路拓扑结构如何在折叠和展开过程中限制所探索的构象相空间:发现禁止展开转变的数量随着平行关系的比例增加而增加,随着串联关系的比例减少而减少。最后,我们发现电路拓扑结构影响是否存在不同的中间状态,交叉接触是关键因素。这里提出的方法可以更广泛地应用于分子动力学、进化生物学、分子工程和单分子生物物理学等问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验