Suppr超能文献

钠钾ATP酶膜中蛋白质-脂质界面处的水渗透分布

Water penetration profile at the protein-lipid interface in Na,K-ATPase membranes.

作者信息

Bartucci Rosa, Guzzi Rita, Esmann Mikael, Marsh Derek

机构信息

Department of Physics, Molecular Biophysics Laboratory and CNISM Unit, University of Calabria, Ponte P. Bucci, Cubo 31C, 87036 Rende (CS), Italy.

Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark.

出版信息

Biophys J. 2014 Sep 16;107(6):1375-82. doi: 10.1016/j.bpj.2014.07.057.

Abstract

The affinity of ionized fatty acids for the Na,K-ATPase is used to determine the transmembrane profile of water penetration at the protein-lipid interface. The standardized intensity of the electron spin echo envelope modulation (ESEEM) from (2)H-hyperfine interaction with D2O is determined for stearic acid, n-SASL, spin-labeled systematically at the C-n atoms throughout the chain. In both native Na,K-ATPase membranes from shark salt gland and bilayers of the extracted membrane lipids, the D2O-ESEEM intensities of fully charged n-SASL decrease progressively with position down the fatty acid chain toward the terminal methyl group. Whereas the D2O intensities decrease sharply at the n = 9 position in the lipid bilayers, a much broader transition region in the range n = 6 to 10 is found with Na,K-ATPase membranes. Correction for the bilayer population in the membranes yields the intrinsic D2O-intensity profile at the protein-lipid interface. For positions at either end of the chains, the D2O concentrations at the protein interface are greater than in the lipid bilayer, and the positional profile is much broader. This reveals the higher polarity, and consequently higher intramembrane water concentration, at the protein-lipid interface. In particular, there is a significant water concentration adjacent to the protein at the membrane midplane, unlike the situation in the bilayer regions of this cholesterol-rich membrane. Experiments with protonated fatty acid and phosphatidylcholine spin labels, both of which have a considerably lower affinity for the Na,K-ATPase, confirm these results.

摘要

利用离子化脂肪酸与钠钾ATP酶的亲和力来确定蛋白质 - 脂质界面处水渗透的跨膜分布。对于硬脂酸、n - SASL(在整个链的C - n原子处系统地进行自旋标记),通过与重水的(2)H超精细相互作用来确定电子自旋回波包络调制(ESEEM)的标准化强度。在来自鲨鱼盐腺的天然钠钾ATP酶膜和提取的膜脂质双层中,完全带电的n - SASL的重水ESEEM强度随着脂肪酸链向下朝向末端甲基的位置逐渐降低。脂质双层中n = 9位置处重水强度急剧下降,而在钠钾ATP酶膜中发现n = 6至10范围内有更宽的转变区域。对膜中双层群体进行校正后,可得到蛋白质 - 脂质界面处的固有重水强度分布。对于链两端的位置,蛋白质界面处的重水浓度高于脂质双层中的浓度,且位置分布更宽。这揭示了蛋白质 - 脂质界面处更高的极性以及因此更高的膜内水浓度。特别是,与富含胆固醇的膜的双层区域情况不同,在膜中平面处蛋白质附近存在显著的水浓度。用质子化脂肪酸和磷脂酰胆碱自旋标记进行的实验证实了这些结果,这两种标记对钠钾ATP酶的亲和力都相当低。

相似文献

1
Water penetration profile at the protein-lipid interface in Na,K-ATPase membranes.
Biophys J. 2014 Sep 16;107(6):1375-82. doi: 10.1016/j.bpj.2014.07.057.
2
Water concentration profiles in membranes measured by ESEEM of spin-labeled lipids.
J Phys Chem B. 2005 Jun 23;109(24):12003-13. doi: 10.1021/jp050886z.
3
Lipid Librations at the Interface with the Na,K-ATPase.
Biophys J. 2015 Jun 16;108(12):2825-32. doi: 10.1016/j.bpj.2015.05.004.
4
ESR spin-label studies of lipid-protein interactions in membranes.
Biophys J. 1982 Jan;37(1):265-74. doi: 10.1016/S0006-3495(82)84675-4.
8
Selectivity of lipid-protein interactions with trypsinized Na, K-ATPase studied by spin-label EPR.
Biochim Biophys Acta. 1998 May 28;1371(2):163-7. doi: 10.1016/s0005-2736(98)00030-3.
9
Conformational heterogeneity and spin-labeled -SH groups: pulsed EPR of Na,K-ATPase.
Biochemistry. 2009 Sep 8;48(35):8343-54. doi: 10.1021/bi900849z.

引用本文的文献

1
Librational Dynamics of Spin-Labeled Membranes at Cryogenic Temperatures From Echo-Detected ED-EPR Spectra.
Front Mol Biosci. 2022 Jun 29;9:923794. doi: 10.3389/fmolb.2022.923794. eCollection 2022.
2
Geometry and water accessibility of the inhibitor binding site of Na-pump: Pulse- and CW-EPR study.
Biophys J. 2021 Jul 6;120(13):2679-2690. doi: 10.1016/j.bpj.2021.05.018. Epub 2021 Jun 2.
3
Site-Directed Spin Labeling EPR for Studying Membrane Proteins.
Biomed Res Int. 2018 Jan 23;2018:3248289. doi: 10.1155/2018/3248289. eCollection 2018.
4
SARS-CoV fusion peptides induce membrane surface ordering and curvature.
Sci Rep. 2016 Nov 28;6:37131. doi: 10.1038/srep37131.
5
Membrane Interactions, Ligand-Dependent Dynamics, and Stability of Cytochrome P4503A4 in Lipid Nanodiscs.
Biochemistry. 2016 Feb 23;55(7):1058-69. doi: 10.1021/acs.biochem.5b01313. Epub 2016 Feb 8.
7
Lipid Librations at the Interface with the Na,K-ATPase.
Biophys J. 2015 Jun 16;108(12):2825-32. doi: 10.1016/j.bpj.2015.05.004.

本文引用的文献

1
Structural adaptations of proteins to different biological membranes.
Biochim Biophys Acta. 2013 Nov;1828(11):2592-608. doi: 10.1016/j.bbamem.2013.06.023. Epub 2013 Jun 27.
3
Spin-echo EPR of Na,K-ATPase unfolding by urea.
Biochim Biophys Acta. 2011 Jun;1808(6):1618-28. doi: 10.1016/j.bbamem.2010.11.008. Epub 2010 Nov 10.
5
Spin-Label EPR for Determining Polarity and Proticity in Biomolecular Assemblies: Transmembrane Profiles.
Appl Magn Reson. 2010 Jan;37(1-4):435-454. doi: 10.1007/s00723-009-0078-3. Epub 2009 Nov 17.
6
Conformational heterogeneity and spin-labeled -SH groups: pulsed EPR of Na,K-ATPase.
Biochemistry. 2009 Sep 8;48(35):8343-54. doi: 10.1021/bi900849z.
7
Crystal structure of the sodium-potassium pump at 2.4 A resolution.
Nature. 2009 May 21;459(7245):446-50. doi: 10.1038/nature07939.
9
Electron spin resonance in membrane research: protein-lipid interactions.
Methods. 2008 Oct;46(2):83-96. doi: 10.1016/j.ymeth.2008.07.001. Epub 2008 Jul 29.
10
Stabilization of Na,K-ATPase by ionic interactions.
Biochim Biophys Acta. 2008 Apr;1778(4):835-43. doi: 10.1016/j.bbamem.2007.12.006. Epub 2007 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验