Suppr超能文献

昼夜节律基因多态性、夜班工作与乳腺癌:GENICA研究结果

Polymorphisms in circadian genes, night work and breast cancer: results from the GENICA study.

作者信息

Rabstein Sylvia, Harth Volker, Justenhoven Christina, Pesch Beate, Plöttner Sabine, Heinze Evelyn, Lotz Anne, Baisch Christian, Schiffermann Markus, Brauch Hiltrud, Hamann Ute, Ko Yon, Brüning Thomas

机构信息

Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA) , Bochum , Germany .

出版信息

Chronobiol Int. 2014 Dec;31(10):1115-22. doi: 10.3109/07420528.2014.957301. Epub 2014 Sep 17.

Abstract

OBJECTIVES

The role of genetic variants and environmental factors in breast cancer etiology has been intensively studied in the last decades. Gene-environment interactions are now increasingly being investigated to gain more insights into the development of breast cancer, specific subtypes, and therapeutics. Recently, night shift work that involves circadian disruption has gained rising interest as a potential non-genetic breast cancer risk factor. Here, we analyzed genetic polymorphisms in genes of cellular clocks, melatonin biosynthesis and signaling and their association with breast cancer as well as gene-gene and gene-night work interactions in a German case-control study on breast cancer.

METHODS

GENICA is a population-based case-control study on breast cancer conducted in the Greater Region of Bonn. Associations between seven polymorphisms in circadian genes (CLOCK, NPAS2, ARTNL, PER2 and CRY2), genes of melatonin biosynthesis and signaling (AANAT and MTNR1B) and breast cancer were analyzed with conditional logistic regression models, adjusted for potential confounders for 1022 cases and 1014 controls. Detailed shift-work information was documented for 857 breast cancer cases and 892 controls. Gene-gene and gene-shiftwork interactions were analyzed using model-based multifactor dimensionality reduction (mbMDR).

RESULTS

For combined heterozygotes and rare homozygotes a slightly elevated breast cancer risk was found for rs8150 in gene AANAT (OR 1.17; 95% CI 1.01-1.36), and a reduced risk for rs3816358 in gene ARNTL (OR 0.82; 95% CI 0.69-0.97) in the complete study population. In the subgroup of shift workers, rare homozygotes for rs10462028 in the CLOCK gene had an elevated risk of breast cancer (OR for AA vs. GG: 3.53; 95% CI 1.09-11.42). Shift work and CLOCK gene interactions were observed in the two-way interaction analysis. In addition, gene-shiftwork interactions were detected for MTNR1B with NPAS2 and ARNTL.

CONCLUSIONS

In conclusion, the results of our population-based case-control study support a putative role of the CLOCK gene in the development of breast cancer in shift workers. In addition, higher order interaction analyses suggest a potential relevance of MTNR1B with the key transcriptional factor NPAS2 with ARNTL. Hence, in the context of circadian disruption, multivariable models should be preferred that consider a wide range of polymorphisms, e.g. that may influence chronotype or light sensitivity. The investigation of these interactions in larger studies is needed.

摘要

目的

在过去几十年中,基因变异和环境因素在乳腺癌病因学中的作用得到了深入研究。目前,人们越来越多地研究基因-环境相互作用,以更深入地了解乳腺癌的发生发展、特定亚型及治疗方法。最近,涉及昼夜节律紊乱的夜班工作作为一种潜在的非遗传乳腺癌风险因素,受到了越来越多的关注。在此,我们在一项关于乳腺癌的德国病例对照研究中,分析了细胞时钟、褪黑素生物合成及信号传导相关基因的遗传多态性,及其与乳腺癌的关联,以及基因-基因和基因-夜班工作之间的相互作用。

方法

GENICA是一项在波恩大区开展的基于人群的乳腺癌病例对照研究。采用条件逻辑回归模型分析了昼夜节律基因(CLOCK、NPAS2、ARNTL、PER2和CRY2)、褪黑素生物合成及信号传导基因(AANAT和MTNR1B)中的7种多态性与乳腺癌之间的关联,并对1022例病例和1014例对照的潜在混杂因素进行了校正。记录了857例乳腺癌病例和892例对照的详细轮班工作信息。使用基于模型的多因素降维法(mbMDR)分析基因-基因和基因-轮班工作之间的相互作用。

结果

在整个研究人群中,对于AANAT基因中的rs8150,杂合子与罕见纯合子组合的乳腺癌风险略有升高(比值比1.17;95%可信区间1.01-1.36),而ARNTL基因中的rs3816358风险降低(比值比0.82;95%可信区间0.69-0.97)。在轮班工作亚组中,CLOCK基因中rs10462028的罕见纯合子患乳腺癌的风险升高(AA与GG相比的比值比:3.53;95%可信区间1.09-11.42)。在双向相互作用分析中观察到轮班工作与CLOCK基因之间的相互作用。此外,还检测到MTNR1B与NPAS2和ARNTL之间的基因-轮班工作相互作用。

结论

总之,我们基于人群的病例对照研究结果支持CLOCK基因在轮班工作者乳腺癌发生中可能发挥的作用。此外,高阶相互作用分析表明MTNR1B与关键转录因子NPAS2和ARNTL之间可能存在相关性。因此,在昼夜节律紊乱的背景下,应优先考虑多变量模型,该模型应考虑广泛的多态性,例如可能影响昼夜类型或光敏感性的多态性。需要在更大规模的研究中对这些相互作用进行调查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验