Biosystems Technology, Institute for Applied Life Sciences, Technical University of Applied Sciences Wildau , Hochschulring 1, D-15745 Wildau, Germany.
ACS Appl Mater Interfaces. 2014 Oct 22;6(20):17887-93. doi: 10.1021/am5046026. Epub 2014 Oct 1.
We report on the fabrication of a complex electrode architecture for efficient direct bioelectrocatalysis. In the developed procedure, the redox enzyme pyrroloquinoline quinone-dependent glucose dehydrogenase entrapped in a sulfonated polyaniline [poly(2-methoxyaniline-5-sulfonic acid)-co-aniline] was immobilized on macroporous indium tin oxide (macroITO) electrodes. The use of the 3D-conducting scaffold with a large surface area in combination with the conductive polymer enables immobilization of large amounts of enzyme and its efficient communication with the electrode, leading to enhanced direct bioelectrocatalysis. In the presence of glucose, the fabricated bioelectrodes show an exceptionally high direct bioelectrocatalytical response without any additional mediator. The catalytic current is increased more than 200-fold compared to planar ITO electrodes. Together with a high long-term stability (the current response is maintained for >90% of the initial value even after 2 weeks of storage), the transparent 3D macroITO structure with a conductive polymer represents a valuable basis for the construction of highly efficient bioelectronic units, which are useful as indicators for processes liberating glucose and allowing optical and electrochemical transduction.
我们报告了一种用于高效直接生物电化学的复杂电极结构的制造。在开发的过程中,将包埋在磺化聚苯胺[聚(2-甲氧基苯胺-5-磺酸)-共苯胺]中的氧化还原酶吡咯并喹啉醌依赖性葡萄糖脱氢酶固定在大孔氧化铟锡(macroITO)电极上。使用具有大表面积的 3D 导电支架与导电聚合物相结合,能够固定大量的酶并使其与电极有效通讯,从而增强直接生物电化学。在存在葡萄糖的情况下,所制备的生物电极在没有任何额外介体的情况下表现出异常高的直接生物电化学响应。与平面 ITO 电极相比,催化电流增加了 200 多倍。与高长期稳定性(即使在存储 2 周后,电流响应仍保持在初始值的>90%)相结合,具有导电聚合物的透明 3D macroITO 结构为构建高效生物电子单元提供了有价值的基础,这些单元可用作释放葡萄糖的过程的指示剂,并允许光学和电化学转换。