Mille Marie-Laure, Simoneau Martin, Rogers Mark W
Université de Toulon, La Garde, France; Aix Marseille Université, Centre National de la Recherche Scientifique, Institut des Sciences du Mouvement Unité Mixte de Recherche 7287, Marseille, France; Department of Physical Therapy and Human Movement Sciences, Northwestern University Medical School, Chicago, Illinois;
Department of Social and Preventive Medicine, Laval University Medical School, Québec, Canada; and.
J Neurophysiol. 2014 Dec 15;112(12):3095-103. doi: 10.1152/jn.00436.2014. Epub 2014 Sep 17.
The initiation of human walking involves postural motor actions for body orientation and balance stabilization that must be effectively integrated with locomotion to allow safe and efficient transport. Our ability to coordinately adapt these functions to environmental or bodily changes through error-based motor learning is essential to effective performance. Predictive compensations for postural perturbations through anticipatory postural adjustments (APAs) that stabilize mediolateral (ML) standing balance normally precede and accompany stepping. The temporal sequencing between these events may involve neural processes that suppress stepping until the expected stability conditions are achieved. If so, then an unexpected perturbation that disrupts the ML APAs should delay locomotion. This study investigated how the central nervous system (CNS) adapts posture and locomotion to perturbations of ML standing balance. Healthy human adults initiated locomotion while a resistance force was applied at the pelvis to perturb posture. In experiment 1, using random perturbations, step onset timing was delayed relative to the APA onset indicating that locomotion was withheld until expected stability conditions occurred. Furthermore, stepping parameters were adapted with the APAs indicating that motor prediction of the consequences of the postural changes likely modified the step motor command. In experiment 2, repetitive postural perturbations induced sustained locomotor aftereffects in some parameters (i.e., step height), immediate but rapidly readapted aftereffects in others, or had no aftereffects. These results indicated both rapid but transient reactive adaptations in the posture and gait assembly and more durable practice-dependent changes suggesting feedforward adaptation of locomotion in response to the prevailing postural conditions.
人类行走的启动涉及身体定向和平衡稳定的姿势运动动作,这些动作必须与运动有效地整合,以实现安全高效的移动。我们通过基于误差的运动学习将这些功能协调地适应环境或身体变化的能力对于有效表现至关重要。通过预期姿势调整(APA)对姿势扰动进行预测性补偿,以稳定内侧-外侧(ML)站立平衡,通常先于并伴随迈步。这些事件之间的时间顺序可能涉及神经过程,该过程会抑制迈步,直到达到预期的稳定条件。如果是这样,那么破坏ML APA的意外扰动应该会延迟运动。本研究调查了中枢神经系统(CNS)如何使姿势和运动适应ML站立平衡的扰动。健康的成年人在骨盆处施加阻力以扰动姿势的同时启动运动。在实验1中,使用随机扰动,迈步起始时间相对于APA起始时间延迟,这表明运动被抑制,直到预期的稳定条件出现。此外,迈步参数与APA相适应,这表明对姿势变化后果的运动预测可能改变了迈步运动指令。在实验2中,重复性姿势扰动在某些参数(即步高)中诱导了持续的运动后效应,在其他参数中诱导了即时但迅速重新适应的后效应,或者没有后效应。这些结果表明姿势和步态组装中既有快速但短暂的反应性适应,也有更持久的依赖练习的变化,这表明运动对主要姿势条件的前馈适应。