万金油:多功能儿茶酚交联机制。
Jack of all trades: versatile catechol crosslinking mechanisms.
机构信息
Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703HB Wageningen, The Netherlands.
出版信息
Chem Soc Rev. 2014 Dec 21;43(24):8271-98. doi: 10.1039/c4cs00185k. Epub 2014 Sep 18.
Catechols play an important role in many natural systems. They are known to readily interact with both organic (e.g., amino acids) and inorganic (e.g., metal ions, metal oxides) compounds, thereby providing a powerful system for protein curing. Catechol crosslinked protein networks, such as sclerotized cuticle and byssal threads of the mussel, have been shown to exhibit excellent mechanical properties. A lot of effort has been devoted to mimicking the natural proteins using synthetic catechol-functionalized polymers. Despite the success in developing catechol-functionalized materials, the crosslinking chemistry of catechols is still a subject of debate. To develop materials with controlled and superior properties, a clear understanding of the crosslinking mechanism of catechols is of vital importance. This review describes the crosslinking pathways of catechol and derivatives in both natural and synthetic systems. We discuss existing pathways of catechol crosslinking and parameters that affect the catechol chemistry in detail. This overview will point towards a rational direction for further investigation of the complicated catechol chemistry.
儿茶酚在许多自然系统中起着重要作用。已知它们很容易与有机(例如氨基酸)和无机(例如金属离子、金属氧化物)化合物相互作用,从而为蛋白质固化提供了强大的系统。儿茶酚交联的蛋白质网络,如硬化的甲壳和贻贝的贻贝足丝,已被证明具有优异的机械性能。人们已经投入了大量精力来使用合成的儿茶酚功能化聚合物来模拟天然蛋白质。尽管在开发儿茶酚功能化材料方面取得了成功,但儿茶酚的交联化学仍然存在争议。为了开发具有可控和优越性能的材料,清楚地了解儿茶酚的交联机制至关重要。本综述描述了儿茶酚及其衍生物在天然和合成系统中的交联途径。我们详细讨论了现有的儿茶酚交联途径和影响儿茶酚化学的参数。这一概述将为进一步研究复杂的儿茶酚化学指明合理的方向。