Suppr超能文献

典型水生生物附着机制概述及仿生粘合剂在水生环境中的应用。

An Overview on the Adhesion Mechanisms of Typical Aquatic Organisms and the Applications of Biomimetic Adhesives in Aquatic Environments.

机构信息

College of Science, National University of Defense Technology, Changsha 410073, China.

出版信息

Int J Mol Sci. 2024 Jul 22;25(14):7994. doi: 10.3390/ijms25147994.

Abstract

Water molecules pose a significant obstacle to conventional adhesive materials. Nevertheless, some marine organisms can secrete bioadhesives with remarkable adhesion properties. For instance, mussels resist sea waves using byssal threads, sandcastle worms secrete sandcastle glue to construct shelters, and barnacles adhere to various surfaces using their barnacle cement. This work initially elucidates the process of underwater adhesion and the microstructure of bioadhesives in these three exemplary marine organisms. The formation of bioadhesive microstructures is intimately related to the aquatic environment. Subsequently, the adhesion mechanisms employed by mussel byssal threads, sandcastle glue, and barnacle cement are demonstrated at the molecular level. The comprehension of adhesion mechanisms has promoted various biomimetic adhesive systems: DOPA-based biomimetic adhesives inspired by the chemical composition of mussel byssal proteins; polyelectrolyte hydrogels enlightened by sandcastle glue and phase transitions; and novel biomimetic adhesives derived from the multiple interactions and nanofiber-like structures within barnacle cement. Underwater biomimetic adhesion continues to encounter multifaceted challenges despite notable advancements. Hence, this work examines the current challenges confronting underwater biomimetic adhesion in the last part, which provides novel perspectives and directions for future research.

摘要

水分子对常规黏附材料构成了重大障碍。然而,一些海洋生物能够分泌具有显著黏附性能的生物黏附剂。例如,贻贝利用足丝抵抗海浪,沙堡蠕虫分泌沙堡胶来建造庇护所,藤壶则使用藤壶水泥附着在各种表面上。这项工作最初阐明了这三种典型海洋生物的水下黏附过程和生物黏附剂的微观结构。生物黏附微结构的形成与水生环境密切相关。随后,在分子水平上展示了贻贝足丝、沙堡胶和藤壶水泥所采用的黏附机制。对黏附机制的理解促进了各种仿生黏附系统的发展:受贻贝足丝蛋白化学成分启发的 DOPA 仿生黏附剂;受沙堡胶和相转变启发的聚电解质水凝胶;以及源自藤壶水泥内多种相互作用和类纳米纤维结构的新型仿生黏附剂。尽管已经取得了显著进展,但水下仿生黏附仍然面临着多方面的挑战。因此,在最后一部分中,本文考察了水下仿生黏附目前面临的挑战,为未来的研究提供了新的视角和方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a95b/11277488/1a06d621f6c8/ijms-25-07994-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验