Newcomb Lucas B, Tevis Ian D, Atkinson Manza B J, Gathiaka Symon M, Luna Rafael E, Thuo Martin
Department of Chemistry, University of Massachusetts Boston , 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States.
Langmuir. 2014 Oct 14;30(40):11985-92. doi: 10.1021/la5032569. Epub 2014 Oct 1.
The origin of the odd-even effect in properties of self-assembled monolayers (SAMs) and/or technologies derived from them is poorly understood. We report that hydrophobicity and, hence, surface wetting of SAMs are dominated by the nature of the substrate (surface roughness and identity) and SAM tilt angle, which influences surface dipoles/orientation of the terminal moiety. We measured static contact angles (θs) made by water droplets on n-alkanethiolate SAMs with an odd (SAM(O)) or even (SAM(E)) number of carbons (average θs range of 105.8-112.1°). When SAMs were fabricated on smooth "template-stripped" metal (M(TS)) surfaces [root-mean-square (rms) roughness = 0.36 ± 0.01 nm for Au(TS) and 0.60 ± 0.04 nm for Ag(TS)], the odd-even effect, characterized by a zigzag oscillation in values of θs, was observed. We, however, did not observe the same effect with rougher "as-deposited" (M(AD)) surfaces (rms roughness = 2.27 ± 0.16 nm for Au(AD) and 5.13 ± 0.22 nm for Ag(AD)). The odd-even effect in hydrophobicity inverts when the substrate changes from Au(TS) (higher θs for SAM(E) than SAM(O), with average Δθs |n - (n + 1)| ≈ 3°) to Ag(TS) (higher θs for SAM(O) than SAM(E), with average Δθs |n - (n + 1)| ≈ 2°). A comparison of hydrophobicity across Ag(TS) and Au(TS) showed a statistically significant difference (Student's t test) between SAM(E) (Δθs |Ag evens - Au evens| ≈ 5°; p < 0.01) but failed to show statistically significant differences on SAM(O) (Δθs |Ag odds - Au odds| ≈ 1°; p > 0.1). From these results, we deduce that the roughness of the metal substrate (from comparison of M(AD) versus M(TS)) and orientation of the terminal -CH2CH3 (by comparing SAM(E) and SAM(O) on Au(TS) versus Ag(TS)) play major roles in the hydrophobicity and, by extension, general wetting properties of n-alkanethiolate SAMs.
自组装单分子层(SAMs)及其衍生技术性质中奇偶效应的起源尚不清楚。我们报告称,SAMs的疏水性以及表面润湿性主要由基底的性质(表面粗糙度和特性)和SAM的倾斜角决定,而这会影响表面偶极子/末端基团的取向。我们测量了水滴在具有奇数(SAM(O))或偶数(SAM(E))碳原子数的正烷硫醇盐SAMs上形成的静态接触角(θs)(平均θs范围为105.8 - 112.1°)。当在光滑的“模板剥离”金属(M(TS))表面制备SAMs时[金(TS)的均方根(rms)粗糙度 = 0.36 ± 0.01 nm,银(TS)的均方根粗糙度 = 0.60 ± 0.04 nm],观察到了以θs值呈锯齿状振荡为特征的奇偶效应。然而,在粗糙度更大的“沉积态”(M(AD))表面[金(AD)的均方根粗糙度 = 2.27 ± 0.16 nm,银(AD)的均方根粗糙度 = 5.13 ± 0.22 nm]上,我们未观察到相同的效应。当基底从金(TS)[SAM(E)的θs高于SAM(O),平均Δθs |n - (n + 1)| ≈ 3°]变为银(TS)[SAM(O)的θs高于SAM(E),平均Δθs |n - (n + 1)| ≈ 2°]时,疏水性的奇偶效应会反转。对银(TS)和金(TS)上的疏水性进行比较显示,SAM(E)之间存在统计学上的显著差异(学生t检验)(Δθs |银偶数 - 金偶数| ≈ 5°;p < 0.01),但SAM(O)之间未显示出统计学上的显著差异(Δθs |银奇数 - 金奇数| ≈ 1°;p > 0.1)。从这些结果中,我们推断金属基底的粗糙度(通过比较M(AD)与M(TS))以及末端 -CH2CH3的取向(通过比较金(TS)与银(TS)上的SAM(E)和SAM(O))在正烷硫醇盐SAMs的疏水性以及由此延伸的一般润湿性中起主要作用。