Suppr超能文献

基于频率滤波的心脏诱导的肺肿瘤运动分析及其对放射治疗管理的影响。

Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management.

作者信息

Chen Ting, Qin Songbing, Xu Xiaoting, Jabbour Salma K, Haffty Bruce G, Yue Ning J

机构信息

Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, USA.

Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.

出版信息

Radiother Oncol. 2014 Sep;112(3):365-70. doi: 10.1016/j.radonc.2014.08.007. Epub 2014 Sep 15.

Abstract

PURPOSE/OBJECTIVES: Lung tumor motion may be impacted by heartbeat in addition to respiration. This study seeks to quantitatively analyze heart-motion-induced tumor motion and to evaluate its impact on lung cancer radiotherapy.

METHODS/MATERIALS: Fluoroscopy images were acquired for 30 lung cancer patients. Tumor, diaphragm, and heart were delineated on selected fluoroscopy frames, and their motion was tracked and converted into temporal signals based on deformable registration propagation. The clinical relevance of heart impact was evaluated using the dose volumetric histogram of the redefined target volumes.

RESULTS

Correlation was found between tumor and cardiac motion for 23 patients. The heart-induced motion amplitude ranged from 0.2 to 2.6 mm. The ratio between heart-induced tumor motion and the tumor motion was inversely proportional to the amplitude of overall tumor motion. When the heart motion impact was integrated, there was an average 9% increase in internal target volumes for 17 patients. Dose coverage decrease was observed on redefined planning target volume in simulated SBRT plans.

CONCLUSIONS

The tumor motion of thoracic cancer patients is influenced by both heart and respiratory motion. The cardiac impact is relatively more significant for tumor with less motion, which may lead to clinically significant uncertainty in radiotherapy for some patients.

摘要

目的/目标:除呼吸外,肺癌肿瘤运动可能还会受到心跳的影响。本研究旨在定量分析心脏运动引起的肿瘤运动,并评估其对肺癌放疗的影响。

方法/材料:对30例肺癌患者采集了透视图像。在选定的透视图像帧上勾勒出肿瘤、膈肌和心脏,并基于可变形配准传播跟踪它们的运动并将其转换为时间信号。使用重新定义的靶区体积的剂量体积直方图评估心脏影响的临床相关性。

结果

在23例患者中发现肿瘤运动与心脏运动之间存在相关性。心脏引起的运动幅度范围为0.2至2.6毫米。心脏引起的肿瘤运动与肿瘤总运动之间的比率与肿瘤总运动幅度成反比。当考虑心脏运动影响时,17例患者的内部靶区体积平均增加了9%。在模拟的立体定向体部放疗计划中,重新定义的计划靶区体积的剂量覆盖范围减小。

结论

胸段癌患者的肿瘤运动受心脏和呼吸运动两者影响。对于运动较少的肿瘤,心脏影响相对更为显著,这可能会给部分患者的放疗带来临床上显著的不确定性。

相似文献

1
Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management.
Radiother Oncol. 2014 Sep;112(3):365-70. doi: 10.1016/j.radonc.2014.08.007. Epub 2014 Sep 15.
2
A novel four-dimensional radiotherapy planning strategy from a tumor-tracking beam's eye view.
Phys Med Biol. 2012 Nov 21;57(22):7579-98. doi: 10.1088/0031-9155/57/22/7579. Epub 2012 Oct 26.
3
A novel deformable lung phantom with programably variable external and internal correlation.
Med Phys. 2019 May;46(5):1995-2005. doi: 10.1002/mp.13507. Epub 2019 Apr 22.
4
Use of lung treatment plans to evaluate DIR algorithms.
Australas Phys Eng Sci Med. 2018 Dec;41(4):837-845. doi: 10.1007/s13246-018-0677-0. Epub 2018 Aug 24.
5
Robust Optimization of SBRT Planning for Patients With Early Stage Non-Small Cell Lung Cancer.
Technol Cancer Res Treat. 2020 Jan-Dec;19:1533033820916505. doi: 10.1177/1533033820916505.
7
Simulation of dosimetry impact of 4DCT uncertainty in 4D dose calculation for lung SBRT.
Radiat Oncol. 2019 Jan 8;14(1):1. doi: 10.1186/s13014-018-1191-y.
8
The irregular breathing effect on target volume and coverage for lung stereotactic body radiotherapy.
J Appl Clin Med Phys. 2019 Jul;20(7):109-120. doi: 10.1002/acm2.12663. Epub 2019 Jun 17.
9
Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer.
Acta Oncol. 2017 Nov;56(11):1604-1609. doi: 10.1080/0284186X.2017.1373848. Epub 2017 Sep 8.

引用本文的文献

1
Clinical evaluation of motion robust reconstruction using deep learning in lung CT.
Phys Eng Sci Med. 2025 Sep 10. doi: 10.1007/s13246-025-01633-y.
3
Deep learning-based target tracking with X-ray images for radiotherapy: a narrative review.
Quant Imaging Med Surg. 2024 Mar 15;14(3):2671-2692. doi: 10.21037/qims-23-1489. Epub 2024 Mar 7.
4
Adaptive hypofractionted and stereotactic body radiotherapy for lung tumors with real-time MRI guidance.
Front Oncol. 2023 Jan 27;13:1061854. doi: 10.3389/fonc.2023.1061854. eCollection 2023.
5
CArdiac and REspiratory adaptive Computed Tomography (CARE-CT): a proof-of-concept digital phantom study.
Phys Eng Sci Med. 2022 Dec;45(4):1257-1271. doi: 10.1007/s13246-022-01193-5. Epub 2022 Nov 25.
6
Intrafraction target shift comparison using two breath-hold systems in lung stereotactic body radiotherapy.
Phys Imaging Radiat Oncol. 2022 Apr 29;22:57-62. doi: 10.1016/j.phro.2022.04.004. eCollection 2022 Apr.
7
Real-time measurement of ICD lead motion during stereotactic body radiotherapy of ventricular tachycardia.
Rep Pract Oncol Radiother. 2021 Feb 25;26(1):128-137. doi: 10.5603/RPOR.a2021.0020. eCollection 2021.
8
Motion correction for routine X-ray lung CT imaging.
Sci Rep. 2021 Feb 12;11(1):3695. doi: 10.1038/s41598-021-83403-w.
9
Real-time intrafraction motion monitoring in external beam radiotherapy.
Phys Med Biol. 2019 Aug 7;64(15):15TR01. doi: 10.1088/1361-6560/ab2ba8.

本文引用的文献

1
Voxel-based statistical analysis of uncertainties associated with deformable image registration.
Phys Med Biol. 2013 Sep 21;58(18):6481-94. doi: 10.1088/0031-9155/58/18/6481. Epub 2013 Sep 3.
4
Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients.
Int J Radiat Oncol Biol Phys. 2008 Mar 15;70(4):1229-38. doi: 10.1016/j.ijrobp.2007.11.042.
5
The management of respiratory motion in radiation oncology report of AAPM Task Group 76.
Med Phys. 2006 Oct;33(10):3874-900. doi: 10.1118/1.2349696.
6
Residual motion of lung tumours in gated radiotherapy with external respiratory surrogates.
Phys Med Biol. 2005 Aug 21;50(16):3655-67. doi: 10.1088/0031-9155/50/16/001. Epub 2005 Jul 28.
7
Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking.
Med Phys. 2005 Apr;32(4):942-51. doi: 10.1118/1.1879152.
8
Artifacts in CT: recognition and avoidance.
Radiographics. 2004 Nov-Dec;24(6):1679-91. doi: 10.1148/rg.246045065.
9
Prediction of respiratory tumour motion for real-time image-guided radiotherapy.
Phys Med Biol. 2004 Feb 7;49(3):425-40. doi: 10.1088/0031-9155/49/3/006.
10
4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT.
Med Phys. 2004 Feb;31(2):333-40. doi: 10.1118/1.1639993.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验