Suppr超能文献

表观遗传事件决定了雄性C57BL/6J小鼠吸入遗传毒性化学物质1,3 - 丁二烯后的组织特异性毒性。

Epigenetic events determine tissue-specific toxicity of inhalational exposure to the genotoxic chemical 1,3-butadiene in male C57BL/6J mice.

作者信息

Chappell Grace, Kobets Tetyana, O'Brien Bridget, Tretyakova Natalia, Sangaraju Dewakar, Kosyk Oksana, Sexton Kenneth G, Bodnar Wanda, Pogribny Igor P, Rusyn Ivan

机构信息

*Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079 and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455.

*Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079 and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455 *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079 and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455.

出版信息

Toxicol Sci. 2014 Dec;142(2):375-84. doi: 10.1093/toxsci/kfu191. Epub 2014 Sep 18.

Abstract

1,3-Butadiene (BD), a widely used industrial chemical and a ubiquitous environmental pollutant, is a known human carcinogen. Although genotoxicity is an established mechanism of the tumorigenicity of BD, epigenetic effects have also been observed in livers of mice exposed to the chemical. To better characterize the diverse molecular mechanisms of BD tumorigenicity, we evaluated genotoxic and epigenotoxic effects of BD exposure in mouse tissues that are target (lung and liver) and non-target (kidney) for BD-induced tumors. We hypothesized that epigenetic alterations may explain, at least in part, the tissue-specific differences in BD tumorigenicity in mice. We evaluated the level of N-7-(2,3,4-trihydroxybut-1-yl)guanine adducts and 1,4-bis-(guan-7-yl)-2,3-butanediol crosslinks, DNA methylation, and histone modifications in male C57BL/6 mice exposed to filtered air or 425 ppm of BD by inhalation (6 h/day, 5 days/week) for 2 weeks. Although DNA damage was observed in all three tissues of BD-exposed mice, variation in epigenetic effects clearly existed between the kidneys, liver, and lungs. Epigenetic alterations indicative of genomic instability, including demethylation of repetitive DNA sequences and alterations in histone-lysine acetylation, were evident in the liver and lung tissues of BD-exposed mice. Changes in DNA methylation were insignificant in the kidneys of treated mice, whereas marks of condensed heterochromatin and transcriptional silencing (histone-lysine trimethylation) were increased. These modifications may represent a potential mechanistic explanation for the lack of tumorigenesis in the kidney. Our results indicate that differential tissue susceptibility to chemical-induced tumorigenesis may be attributed to tissue-specific epigenetic alterations.

摘要

1,3 - 丁二烯(BD)是一种广泛使用的工业化学品,也是一种普遍存在的环境污染物,是已知的人类致癌物。虽然遗传毒性是BD致瘤性的既定机制,但在接触该化学品的小鼠肝脏中也观察到了表观遗传效应。为了更好地表征BD致瘤性的多种分子机制,我们评估了BD暴露在BD诱导肿瘤的靶组织(肺和肝)和非靶组织(肾)中的遗传毒性和表观遗传毒性效应。我们假设表观遗传改变可能至少部分解释了小鼠BD致瘤性的组织特异性差异。我们评估了雄性C57BL / 6小鼠吸入过滤空气或425 ppm BD(每天6小时,每周5天)2周后,N - 7 -(2,3,4 - 三羟基丁 - 1 - 基)鸟嘌呤加合物和1,4 - 双 -(鸟嘌呤 - 7 - 基)-2,3 - 丁二醇交联物的水平、DNA甲基化和组蛋白修饰。虽然在BD暴露小鼠的所有三个组织中都观察到了DNA损伤,但肾、肝和肺之间的表观遗传效应明显存在差异。在BD暴露小鼠的肝和肺组织中,表明基因组不稳定的表观遗传改变很明显,包括重复DNA序列的去甲基化和组蛋白赖氨酸乙酰化的改变。在处理小鼠的肾脏中,DNA甲基化的变化不显著,而浓缩异染色质和转录沉默的标记(组蛋白赖氨酸三甲基化)增加。这些修饰可能是肾脏缺乏肿瘤发生的潜在机制解释。我们的结果表明,化学诱导肿瘤发生的组织易感性差异可能归因于组织特异性表观遗传改变。

相似文献

2
Epigenetic mechanisms of mouse interstrain variability in genotoxicity of the environmental toxicant 1,3-butadiene.
Toxicol Sci. 2011 Aug;122(2):448-56. doi: 10.1093/toxsci/kfr133. Epub 2011 May 20.
3
Epigenetic alterations in liver of C57BL/6J mice after short-term inhalational exposure to 1,3-butadiene.
Environ Health Perspect. 2011 May;119(5):635-40. doi: 10.1289/ehp.1002910. Epub 2010 Dec 13.
4
Population-Based Analysis of DNA Damage and Epigenetic Effects of 1,3-Butadiene in the Mouse.
Chem Res Toxicol. 2019 May 20;32(5):887-898. doi: 10.1021/acs.chemrestox.9b00035. Epub 2019 Apr 25.
5
Sex-specific differences in genotoxic and epigenetic effects of 1,3-butadiene among mouse tissues.
Arch Toxicol. 2019 Mar;93(3):791-800. doi: 10.1007/s00204-018-2374-x. Epub 2018 Dec 14.
6
HPLC-ESI+-MS/MS analysis of N7-guanine-N7-guanine DNA cross-links in tissues of mice exposed to 1,3-butadiene.
Chem Res Toxicol. 2007 May;20(5):839-47. doi: 10.1021/tx700020q. Epub 2007 Apr 25.
7
Genotoxic and Epigenotoxic Alterations in the Lung and Liver of Mice Induced by Acrylamide: A 28 Day Drinking Water Study.
Chem Res Toxicol. 2019 May 20;32(5):869-877. doi: 10.1021/acs.chemrestox.9b00020. Epub 2019 Mar 12.
9
Persistence and repair of bifunctional DNA adducts in tissues of laboratory animals exposed to 1,3-butadiene by inhalation.
Chem Res Toxicol. 2011 Jun 20;24(6):809-17. doi: 10.1021/tx200009b. Epub 2011 Apr 13.

引用本文的文献

1
Characterization of population variability of 1,3-butadiene derived protein adducts in humans and mice.
Regul Toxicol Pharmacol. 2022 Jul;132:105171. doi: 10.1016/j.yrtph.2022.105171. Epub 2022 Apr 22.
2
Commentary: Novel strategies and new tools to curtail the health effects of pesticides.
Environ Health. 2021 Aug 3;20(1):87. doi: 10.1186/s12940-021-00773-4.
3
An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality.
Int J Environ Res Public Health. 2021 Jun 28;18(13):6930. doi: 10.3390/ijerph18136930.
4
Sex-specific differences in genotoxic and epigenetic effects of 1,3-butadiene among mouse tissues.
Arch Toxicol. 2019 Mar;93(3):791-800. doi: 10.1007/s00204-018-2374-x. Epub 2018 Dec 14.
6
Tissue- and strain-specific effects of a genotoxic carcinogen 1,3-butadiene on chromatin and transcription.
Mamm Genome. 2018 Feb;29(1-2):153-167. doi: 10.1007/s00335-018-9739-6. Epub 2018 Feb 10.
7
Application of epigenetic data in human health risk assessment.
Curr Opin Toxicol. 2017 Nov 6;6:71-78. doi: 10.1016/j.cotox.2017.09.002.
10
Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review.
Mutat Res Rev Mutat Res. 2016 Apr-Jun;768:27-45. doi: 10.1016/j.mrrev.2016.03.004. Epub 2016 Mar 31.

本文引用的文献

1
Epigenetic profiles as defined signatures of xenobiotic exposure.
Mutat Res Genet Toxicol Environ Mutagen. 2014 Apr;764-765:3-9. doi: 10.1016/j.mrgentox.2013.08.007. Epub 2013 Aug 31.
2
H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not alter chromatin compaction.
Genome Res. 2013 Dec;23(12):2053-65. doi: 10.1101/gr.155028.113. Epub 2013 Aug 29.
3
Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation.
Carcinogenesis. 2013 Sep;34(9):1955-67. doi: 10.1093/carcin/bgt212. Epub 2013 Jun 7.
4
Chemical agents and related occupations.
IARC Monogr Eval Carcinog Risks Hum. 2012;100(Pt F):9-562.
5
DNA methylome alterations in chemical carcinogenesis.
Cancer Lett. 2013 Jun 28;334(1):39-45. doi: 10.1016/j.canlet.2012.09.010. Epub 2012 Sep 23.
6
Environmental toxicants, epigenetics, and cancer.
Adv Exp Med Biol. 2013;754:215-32. doi: 10.1007/978-1-4419-9967-2_11.
7
Chromatin organization is a major influence on regional mutation rates in human cancer cells.
Nature. 2012 Aug 23;488(7412):504-7. doi: 10.1038/nature11273.
8
Nucleosome assembly and genome integrity: The fork is the link.
Bioarchitecture. 2012 Jan 1;2(1):6-10. doi: 10.4161/bioa.19737.
10
Interactions between DNA damage, repair, and transcription.
Mutat Res. 2012 Aug 1;736(1-2):5-14. doi: 10.1016/j.mrfmmm.2011.07.014. Epub 2011 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验