Suppr超能文献

五吡啶钴配合物的光致析氢:阐明一些机理方面的问题。

Photoinduced hydrogen evolution by a pentapyridine cobalt complex: elucidating some mechanistic aspects.

作者信息

Deponti Elisa, Luisa Alessandra, Natali Mirco, Iengo Elisabetta, Scandola Franco

机构信息

Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy.

出版信息

Dalton Trans. 2014 Nov 21;43(43):16345-53. doi: 10.1039/c4dt02269f.

Abstract

A new hydrogen evolving cobalt catalyst 1 based on a pentapyridine ligand has been synthesized and characterized. Its photocatalytic activity in the presence of a Ru(bpy)3(2+) sensitizer and ascorbic acid as a sacrificial electron donor has been screened in purely buffered aqueous solutions showing TONs and TOFs strongly dependent on both catalyst concentration and pH with the best results obtained at 50 μM 1 and at pH 4 (TON = 187, TOF = 8.1 min(-1)). The photochemical mechanism, as revealed by flash photolysis, involves reaction of the excited sensitizer with ascorbic acid to yield Ru(bpy)3(+) as a primary photo-generated reductant, capable of electron transfer to 1 with a remarkable rate (bimolecular rate constant k = 5.7 (±0.7) × 10(9) M(-1) s(-1)). For hydrogen generation, two one-electron photochemical reduction steps of 1 are needed along with hydride formation and protonation. Under the experimental conditions used, hydrogen evolution is mainly limited by partial decomposition of both the sensitizer and the catalyst. Moreover, accumulation of the oxidation product of the ascorbic acid donor, dehydroascorbic acid, is observed to strongly decrease the hydrogen production yield. As shown by flash photolysis, this species is capable of quenching the reduced ruthenium species (k = 4.4 (±0.5) × 10(7) M(-1) s(-1)) thus competing with electron transfer to the catalyst.

摘要

一种基于五吡啶配体的新型析氢钴催化剂1已被合成并表征。在纯缓冲水溶液中,以Ru(bpy)3(2+)敏化剂和抗坏血酸作为牺牲电子供体,对其光催化活性进行了筛选,结果表明,TONs和TOFs强烈依赖于催化剂浓度和pH值,在50 μM 1和pH 4时获得最佳结果(TON = 187,TOF = 8.1 min(-1))。闪光光解揭示的光化学机理涉及激发态敏化剂与抗坏血酸反应生成Ru(bpy)3(+)作为初级光生还原剂,其能够以显著的速率将电子转移到1上(双分子速率常数k = 5.7 (±0.7) × 10(9) M(-1) s(-1))。对于析氢,1需要两个单电子光化学还原步骤以及氢化物形成和质子化。在所使用的实验条件下,析氢主要受敏化剂和催化剂的部分分解限制。此外,观察到抗坏血酸供体的氧化产物脱氢抗坏血酸的积累会强烈降低产氢率。如闪光光解所示,该物种能够猝灭还原态钌物种(k = 4.4 (±0.5) × 10(7) M(-1) s(-1)),从而与电子转移到催化剂的过程竞争。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验