Suppr超能文献

四钌多金属氧酸盐催化剂光诱导水氧化:与 Ru(bpy)3(2+)敏化剂的离子对形成和初级过程。

Photoinduced water oxidation by a tetraruthenium polyoxometalate catalyst: ion-pairing and primary processes with Ru(bpy)3(2+) photosensitizer.

机构信息

Dipartimento di Chimica and Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLARCHEM), sezione di Ferrara, via Borsari 46, 44121 Ferrara, Italy.

出版信息

Inorg Chem. 2012 Jul 2;51(13):7324-31. doi: 10.1021/ic300703f. Epub 2012 Jun 11.

Abstract

The tetraruthenium polyoxometalate Ru(4)(μ-O)(4)(μ-OH)(2)(H(2)O)(4)(γ-SiW(10)O(36))(2) (1) behaves as a very efficient water oxidation catalyst in photocatalytic cycles using Ru(bpy)(3)(2+) as sensitizer and persulfate as sacrificial oxidant. Two interrelated issues relevant to this behavior have been examined in detail: (i) the effects of ion pairing between the polyanionic catalyst and the cationic Ru(bpy)(3)(2+) sensitizer, and (ii) the kinetics of hole transfer from the oxidized sensitizer to the catalyst. Complementary charge interactions in aqueous solution leads to an efficient static quenching of the Ru(bpy)(3)(2+) excited state. The quenching takes place in ion-paired species with an average 1:Ru(bpy)(3)(2+) stoichiometry of 1:4. It occurs by very fast (ca. 2 ps) electron transfer from the excited photosensitizer to the catalyst followed by fast (15-150 ps) charge recombination (reversible oxidative quenching mechanism). This process competes appreciably with the primary photoreaction of the excited sensitizer with the sacrificial oxidant, even in high ionic strength media. The Ru(bpy)(3)(3+) generated by photoreaction of the excited sensitizer with the sacrificial oxidant undergoes primary bimolecular hole scavenging by 1 at a remarkably high rate (3.6 ± 0.1 × 10(9) M(-1) s(-1)), emphasizing the kinetic advantages of this molecular species over, e.g., colloidal oxide particles as water oxidation catalysts. The kinetics of the subsequent steps and final oxygen evolution process involved in the full photocatalytic cycle are not known in detail. An indirect indication that all these processes are relatively fast, however, is provided by the flash photolysis experiments, where a single molecule of 1 is shown to undergo, in 40 ms, ca. 45 turnovers in Ru(bpy)(3)(3+) reduction. With the assumption that one molecule of oxygen released after four hole-scavenging events, this translates into a very high average turnover frequency (280 s(-1)) for oxygen production.

摘要

四钌多金属氧酸盐Ru(4)(μ-O)(4)(μ-OH)(2)(H(2)O)(4)(γ-SiW(10)O(36))(2) (1) 在使用 Ru(bpy)(3)(2+)作为敏化剂和过硫酸盐作为牺牲氧化剂的光催化循环中表现出非常有效的水氧化催化剂。已经详细研究了与这种行为相关的两个相互关联的问题:(i) 多阴离子催化剂与阳离子 Ru(bpy)(3)(2+)敏化剂之间的离子配对的影响,以及 (ii) 从氧化敏化剂到催化剂的空穴转移的动力学。在水溶液中互补的电荷相互作用导致 Ru(bpy)(3)(2+)激发态的有效静态猝灭。猝灭发生在平均 1:Ru(bpy)(3)(2+)化学计量比为 1:4 的离子对物种中。它是通过从激发态光敏剂到催化剂的非常快速(约 2 ps)电子转移发生的,随后是快速(15-150 ps)电荷复合(可逆氧化猝灭机制)。即使在高离子强度介质中,该过程也与激发敏化剂与牺牲氧化剂的初始光反应相当竞争。由牺牲氧化剂与激发敏化剂的光反应生成的 Ru(bpy)(3)(3+)以非常高的速率(3.6 ± 0.1 × 10(9) M(-1) s(-1))被 1 进行初级双分子空穴捕获,强调了这种分子物种相对于例如胶体氧化物颗粒作为水氧化催化剂的动力学优势。完整光催化循环中涉及的后续步骤和最终氧气释放过程的动力学尚不清楚。然而,闪光光解实验提供了一个间接迹象,表明所有这些过程都相对较快,其中在 40 ms 内,一个 1 分子经历了大约 45 次 Ru(bpy)(3)(3+)还原的转化。假设在四个空穴清除事件之后释放一个氧分子,这转化为氧产生的非常高的平均周转率(280 s(-1))。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验