Suppr超能文献

自组装、对齐的 ZnO 纳米棒缓冲层用于高电流密度的倒置有机光伏器件。

Self-assembled, aligned ZnO nanorod buffer layers for high-current-density, inverted organic photovoltaics.

机构信息

Department of Materials Engineering and ‡Materials Research Center, Indian Institute of Science , Bangalore, Karnataka 560012, India.

出版信息

ACS Appl Mater Interfaces. 2014 Oct 8;6(19):16792-9. doi: 10.1021/am503955k. Epub 2014 Sep 19.

Abstract

Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of ∼3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer.

摘要

两种不同的基于软化学、自组装的溶液方法被用于生长具有可控纹理的氧化锌 (ZnO) 纳米棒。所使用的方法包括在基底上的种子生长和生长。生长出具有各种纵横比(1-5)和直径(15-65nm)的纳米棒。获得高取向的棒取决于基底在化学浴中的安装方式。此外,预热和离心步骤对于优化生长溶液是必不可少的。在最佳样品中,我们获得了几乎完全沿 (002) 方向取向的 ZnO 纳米棒;这是理想的,因为 ZnO 的电子迁移率在这个晶轴方向上最高。当用作倒置有机光伏(I-OPV)的缓冲层时,这些一维(1D)纳米结构提供:(a)电荷传输的直接路径和(b)用于电子收集的高界面面积。使用扫描电子显微镜、X 射线衍射和紫外-可见光(UV-vis)吸收光谱研究 ZnO 纳米棒的形态、结构和光学性质。此外,使用 X 射线光电子能谱和接触角测量研究 ZnO 薄膜的表面化学特征。使用生长的 ZnO,制造和表征倒置 OPV。为了提高器件性能,将 ZnO 纳米棒进行 UV 臭氧处理。UV-臭氧处理的 ZnO 纳米棒表现出:(i)光学透过率提高,(ii)活性有机成分润湿性增加,以及(iii)Zn-O 表面键浓度增加。这些观察结果与器件性能的提高很好地相关。使用这些优化的缓冲层制造的器件具有约 3.2%的效率和 0.50 的填充因子;这与使用 P3HT-PCBM 活性层的最佳 I-OPV 报告相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验