Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET and †Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria , Pab. II (1428), Buenos Aires, Argentina.
Acc Chem Res. 2014 Oct 21;47(10):2907-16. doi: 10.1021/ar500153c. Epub 2014 Sep 19.
Azanone ((1)HNO, nitroxyl) shows interesting yet poorly understood chemical and biological effects. HNO has some overlapping properties with nitric oxide (NO), sharing its biological reactivity toward heme proteins, thiols, and oxygen. Despite this similarity, HNO and NO show significantly different pharmacological effects. The high reactivity of HNO means that studies must rely on the use of donor molecules such as trioxodinitrate (Angeli's salt). It has been suggested that azanone could be an intermediate in several reactions and that it may be an enzymatically produced signaling molecule. The inherent difficulty in detecting its presence unequivocally prevents evidence from yielding definite answers. On the other hand, metalloporphyrins are widely used as chemical models of heme proteins, providing us with invaluable tools for the study of the coordination chemistry of small molecules, like NO, CO, and O2. Studies with transition metal porphyrins have shown diverse mechanistic, kinetic, structural, and reactive aspects related to the formation of nitrosyl complexes. Porphyrins are also widely used in technical applications, especially when coupled to a surface, where they can be used as electrochemical gas sensors. Given their versatility, they have not escaped their role as key players in chemical studies involving HNO. This Account presents the research performed during the last 10 years in our group concerning azanone reactions with iron, manganese, and cobalt porphyrins. We begin by describing their HNO trapping capabilities, which result in formation of the corresponding nitrosyl complexes. Kinetic and mechanistic studies of these reactions show two alternative operating mechanisms: reaction of the metal center with HNO or with the donor. Moreover, we have also shown that azanone can be stabilized by coordination to iron porphyrins using electron-attracting substituents attached to the porphyrin ring, which balance the negatively charged NO¯. Second, we describe an electrochemical HNO sensing device based on the covalent attachment of a cobalt porphyrin to gold. A surface effect affects the redox potentials and allows discrimination between HNO and NO. The reaction with the former is fast, efficient, and selective, lacking spurious signals due to the presence of reactive nitrogen and oxygen species. The sensor is both biologically compatible and highly sensitive (nanomolar). This time-resolved detection allows kinetic analysis of reactions producing HNO. The sensor thus offers excellent opportunities to be used in experiments looking for HNO. As examples, we present studies concerning (a) HNO donation capabilities of new HNO donors as assessed by the sensor, (b) HNO detection as an intermediate in O atom abstraction to nitrite by phosphines, and (c) NO to HNO interconversion mediated by alcohols and thiols. Finally, we briefly discuss the key experiments required to demonstrate endogenous HNO formation to be done in the near future, involving the in vivo use of the HNO sensing device.
氮氧自由基(1HNO,亚硝酰基)具有有趣但尚未完全理解的化学和生物学效应。HNO 与一氧化氮(NO)具有一些重叠的特性,两者都对血红素蛋白、硫醇和氧具有生物反应性。尽管存在这种相似性,但 HNO 和 NO 表现出明显不同的药理学效应。HNO 的高反应性意味着研究必须依赖于使用供体分子,如三氧化二硝(安格利盐)。有人提出,氮氧自由基可能是几种反应的中间产物,它可能是一种酶促产生的信号分子。由于其存在的固有难以确定性,阻止了证据提供明确的答案。另一方面,金属卟啉被广泛用作血红素蛋白的化学模型,为我们研究小分子(如 NO、CO 和 O2)的配位化学提供了宝贵的工具。过渡金属卟啉的研究表明,与形成亚硝酰配合物有关的反应具有多样化的机械、动力学、结构和反应性方面。卟啉还广泛应用于技术应用中,特别是在与表面结合时,它们可用作电化学气体传感器。鉴于其多功能性,它们在涉及 HNO 的化学研究中也没有逃脱其作为关键参与者的角色。本账户介绍了我们小组在过去 10 年中在铁、锰和钴卟啉与氮氧自由基反应方面进行的研究。我们首先描述了它们捕获 HNO 的能力,这导致形成相应的亚硝酰配合物。这些反应的动力学和机制研究表明了两种替代的操作机制:金属中心与 HNO 或供体的反应。此外,我们还表明,氮氧自由基可以通过将电子吸引取代基附着在卟啉环上来稳定铁卟啉,这平衡了带负电荷的 NO¯。其次,我们描述了一种基于钴卟啉与金的共价附着的电化学 HNO 传感装置。表面效应会影响氧化还原电位,并允许区分 HNO 和 NO。与前者的反应是快速、高效和选择性的,由于存在反应性氮和氧物种,因此缺乏虚假信号。该传感器具有生物相容性和高灵敏度(纳摩尔)。这种时间分辨检测允许对产生 HNO 的反应进行动力学分析。该传感器因此为寻找 HNO 的实验提供了极好的机会。作为示例,我们介绍了(a)新的 HNO 供体作为传感器评估的 HNO 供体能力的研究,(b)通过膦原子向亚硝酸盐的原子提取检测 HNO 作为中间体,以及(c)通过醇和硫醇介导的 NO 到 HNO 的相互转化。最后,我们简要讨论了在不久的将来需要进行的证明内源性 HNO 形成的关键实验,包括在体内使用 HNO 传感装置。