Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay.
Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
J Biol Chem. 2019 Oct 4;294(40):14776-14802. doi: 10.1074/jbc.REV119.006136. Epub 2019 Aug 12.
The free radical nitric oxide (NO) exerts biological effects through the direct and reversible interaction with specific targets ( soluble guanylate cyclase) or through the generation of secondary species, many of which can oxidize, nitrosate or nitrate biomolecules. The NO-derived reactive species are typically short-lived, and their preferential fates depend on kinetic and compartmentalization aspects. Their detection and quantification are technically challenging. In general, the strategies employed are based either on the detection of relatively stable end products or on the use of synthetic probes, and they are not always selective for a particular species. In this study, we describe the biologically relevant characteristics of the reactive species formed downstream from NO, and we discuss the approaches currently available for the analysis of NO, nitrogen dioxide (NO), dinitrogen trioxide (NO), nitroxyl (HNO), and peroxynitrite (ONOO/ONOOH), as well as peroxynitrite-derived hydroxyl (HO) and carbonate anion (CO) radicals. We also discuss the biological origins of and analytical tools for detecting nitrite (NO), nitrate (NO), nitrosyl-metal complexes, -nitrosothiols, and 3-nitrotyrosine. Moreover, we highlight state-of-the-art methods, alert readers to caveats of widely used techniques, and encourage retirement of approaches that have been supplanted by more reliable and selective tools for detecting and measuring NO-derived oxidants. We emphasize that the use of appropriate analytical methods needs to be strongly grounded in a chemical and biochemical understanding of the species and mechanistic pathways involved.
自由基一氧化氮(NO)通过与特定靶标(可溶性鸟苷酸环化酶)的直接和可逆相互作用,或通过生成许多可以氧化、亚硝化或硝化生物分子的次生物质来发挥生物学效应。NO 衍生的活性物质通常寿命较短,其优先命运取决于动力学和区室化方面。它们的检测和定量具有技术挑战性。一般来说,所采用的策略要么基于相对稳定的终产物的检测,要么基于合成探针的使用,而且它们并不总是对特定物种具有选择性。在这项研究中,我们描述了 NO 下游形成的活性物质的生物学相关特征,并讨论了目前用于分析 NO、二氧化氮(NO)、三氧化二氮(NO)、亚硝酰基(HNO)和过氧亚硝酸根(ONOO/ONOOH),以及过氧亚硝酸根衍生的羟基(HO)和碳酸根(CO)自由基的方法。我们还讨论了检测亚硝酸盐(NO)、硝酸盐(NO)、亚硝酰-金属配合物、-亚硝硫醇和 3-硝基酪氨酸的生物学起源和分析工具。此外,我们强调了最先进的方法,提醒读者注意广泛使用的技术的注意事项,并鼓励淘汰那些已经被更可靠和选择性的检测和测量 NO 衍生氧化剂的工具所取代的方法。我们强调,适当的分析方法的使用需要基于对所涉及的物种和机制途径的化学和生化理解。