Suppr超能文献

一种新的用于管理肾上腺意外瘤患者的风险分层算法。

A new risk stratification algorithm for the management of patients with adrenal incidentalomas.

机构信息

Department of Endocrine Surgery, Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, OH.

Department of Endocrine Surgery, Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, OH.

出版信息

Surgery. 2014 Oct;156(4):959-65. doi: 10.1016/j.surg.2014.06.042.

Abstract

BACKGROUND

Although adrenal incidentalomas (AI) are detected in ≤5% of patients undergoing chest and abdominal computed tomography (CT), their management is challenging. The current guidelines include recommendations from the National Institutes of Health, the American Association of Endocrine Surgeons (AAES), and the American Association for Cancer Education (AACE). The aim of this study was to develop a new risk stratification model and compare its performance against the existing guidelines for managing AI.

METHODS

A risk stratification model was designed by assigning points for adrenal size (1, 2, or 3 points for tumors <4, 4-6, or >6 cm, respectively) and Hounsfield unit (HU) density on noncontrast CT (1, 2, or 3 points for HU <10, 10-20, or >20, respectively). This model was applied retrospectively to 157 patients with AI managed in an endocrine surgery clinic to assign a score to each tumor. The utility of this model versus the AAES/AACE guidelines was assessed.

RESULTS

Of the 157 patients, 54 (34%), had tumors <4 cm with HU <10 (a score of 2). One third of these were hormonally active on biochemical workup and underwent adrenalectomy. The remaining two thirds were nonsecretory lesions and have been followed conservatively with annual testing. In 103 patients (66%), the adrenal mass was >4 cm and/or had indeterminate features on noncontrast CT (HU >10, irregular borders, heterogeneity), and adrenalectomy was performed after hormonal evaluation was completed (10 were hormonally active on biochemical testing). Seven of these patients (7%) had adrenocortical cancer on final pathology with tumor size <4 cm in 0, 4-6 cm in 1, and >6 cm in 5 patients. Of the hormonally inactive patients, 32% had a score of 3, 38% 4, and 30% 5 or 6. The incidence of adrenocortical cancer in these subgroups was 0, 0, and 25%, respectively.

CONCLUSION

This study shows that an algorithm that utilizes the hormonal activity at the first decision step followed by a consolidated risk stratification, based on tumor size and HU density, has a potential to spare a substantial number of patients from unnecessary "diagnostic" surgery for AI.

摘要

背景

尽管在接受胸部和腹部计算机断层扫描(CT)的患者中,仅 5%的患者会检测到肾上腺意外瘤(AI),但其管理颇具挑战性。目前的指南包括美国国立卫生研究院、美国内分泌外科学会(AAES)和美国癌症教育协会(AACE)的建议。本研究旨在建立一种新的风险分层模型,并将其与现有的 AI 管理指南进行比较。

方法

设计了一种风险分层模型,通过为肾上腺肿瘤的大小(肿瘤<4cm、4-6cm 或>6cm 分别记为 1、2 或 3 分)和非增强 CT 的 Hounsfield 单位(HU)密度(HU<10、10-20 或>20 分别记为 1、2 或 3 分)分配分数。该模型被应用于在内分泌外科诊所接受治疗的 157 名 AI 患者的回顾性分析中,为每个肿瘤分配一个分数。评估该模型与 AAES/AACE 指南的应用效果。

结果

在 157 名患者中,有 54 名(34%)患者的肿瘤<4cm,HU<10(记为 2 分)。其中三分之一在生化检查中具有激素活性,并接受了肾上腺切除术。其余三分之二为无分泌功能的病变,一直通过每年的检查进行保守治疗。在 103 名(66%)患者中,肾上腺肿块>4cm,或非增强 CT 具有不确定特征(HU>10、不规则边界、异质性),在完成激素评估后进行了肾上腺切除术(10 名患者在生化检查中具有激素活性)。这 7 名患者(7%)的最终病理为肾上腺皮质癌,肿瘤大小分别为 0 例<4cm、1 例 4-6cm、5 例>6cm。在无激素活性的患者中,32%的患者记分为 3,38%为 4,30%为 5 或 6。这些亚组中肾上腺皮质癌的发生率分别为 0、0 和 25%。

结论

本研究表明,一种算法可以根据肿瘤大小和 HU 密度,在首次决策步骤中利用激素活性,然后进行综合风险分层,有可能使大量患者免于为 AI 进行不必要的“诊断性”手术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验