Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India.
Department of Forest Science & Technology, Institute of Agriculture and Life Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea.
Biosens Bioelectron. 2015 Feb 15;64:269-76. doi: 10.1016/j.bios.2014.08.085. Epub 2014 Sep 6.
Magnetite (Fe3O4) nanorods anchored over reduced graphene oxide (rGO) were synthesized through a one-pot synthesis method, where the reduction of GO and in-situ generation of Fe3O4 nanorods occurred concurrently. The average head and tail diameter of Fe3O4 nanorods anchored over the rGO matrix are found to be 32 and 11 nm, respectively, and morphology, structure and diameter of bare Fe3O4 nanorods were not altered even after the composite formation with rGO. The increased structural disorders and decrement in the sp(2) domains stimulated the high electrical conductivity and extended catalytic active sites for the prepared rGO/Fe3O4 nanocomposite. The constructed rGO/Fe3O4/GCE sensor exhibited excellent electrocatalytic activity toward the electrooxidation of dopamine (DA) with a quick response time of 6s, a wide linear range between 0.01 and 100.55 µM, high sensitivity of 3.15 µA µM(-1) cm(-2) and a lower detection limit of 7 nM. Furthermore, the fabricated sensor exhibited a practical applicability in the quantification of DA in urine samples with an excellent recovery rate. The excellent electroanalytical performances and straight-forward, surfactant and template free preparation method construct the rGO/Fe3O4 composite as an extremely promising material for the diagnosis of DA related diseases in biomedical applications.
通过一锅合成法合成了锚定在还原氧化石墨烯(rGO)上的磁铁矿(Fe3O4)纳米棒,其中 GO 的还原和 Fe3O4 纳米棒的原位生成同时发生。锚定在 rGO 基体上的 Fe3O4 纳米棒的平均头径和尾径分别为 32nm 和 11nm,即使在与 rGO 复合后,Fe3O4 纳米棒的形貌、结构和直径也没有改变。增加的结构无序和 sp2 畴的减少刺激了制备的 rGO/Fe3O4 纳米复合材料的高导电性和扩展的催化活性位点。构建的 rGO/Fe3O4/GCE 传感器对多巴胺(DA)的电氧化表现出优异的电催化活性,具有 6s 的快速响应时间、0.01 至 100.55µM 之间的宽线性范围、3.15µAµM(-1)cm(-2)的高灵敏度和 7nM 的低检测限。此外,该传感器在尿液样品中 DA 的定量分析中表现出优异的实际应用性能,回收率高。优异的电分析性能和简单的、无表面活性剂和模板的制备方法使 rGO/Fe3O4 复合材料成为生物医学应用中诊断与 DA 相关疾病的极有前途的材料。